Robert D. Flint

Learn More
OBJECTIVE Brain machine interfaces (BMIs) have the potential to restore movement to people with paralysis. However, a clinically-viable BMI must enable consistently accurate control over time spans ranging from years to decades, which has not yet been demonstrated. Most BMIs that use single-unit spikes as inputs will experience degraded performance over(More)
The recent explosion of interest in brain-machine interfaces (BMIs) has spurred research into choosing the optimal input signal source for a desired application. The signals with highest bandwidth--single neuron action potentials or spikes--typically are difficult to record for more than a few years after implantation of intracortical electrodes.(More)
Local field potentials (LFPs) in primary motor cortex include significant information about reach target location and upper limb movement kinematics. Some evidence suggests that they may be a more robust, longer-lasting signal than action potentials (spikes). Here we assess whether LFPs can also be used to decode upper limb muscle activity, a complex(More)
Brain machine interfaces (BMIs) have the potential to provide intuitive control of neuroprostheses to restore grasp to patients with paralyzed or amputated upper limbs. For these neuroprostheses to function, the ability to accurately control grasp force is critical. Grasp force can be decoded from neuronal spikes in monkeys, and hand kinematics can be(More)
Stereotypical locomotor movements can be made without input from the brain after a complete spinal transection. However, the restoration of functional gait requires descending modulation of spinal circuits to independently control the movement of each limb. To evaluate whether a brain-machine interface (BMI) could be used to regain conscious control over(More)
OBJECTIVE Although brain-computer interfaces (BCIs) can be used in several different ways to restore communication, communicative BCI has not approached the rate or efficiency of natural human speech. Electrocorticography (ECoG) has precise spatiotemporal resolution that enables recording of brain activity distributed over a wide area of cortex, such as(More)
The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its(More)
UNLABELLED The human motor system is capable of remarkably precise control of movements--consider the skill of professional baseball pitchers or surgeons. This precise control relies upon stable representations of movements in the brain. Here, we investigated the stability of cortical activity at multiple spatial and temporal scales by recording local field(More)
The objective of this study was to evaluate the relationship between alcohol/drug abuse diagnoses, driving convictions (speeding, reckless driving, impaired driving, license violations), and risk-taking dispositions among a series of injured drivers admitted to a trauma center. The driving records of 778 patients were linked to diagnoses of psychoactive(More)
OBJECTIVE To compare the efficacies of nebulized vs. intravenous fentanyl for the relief of abdominal pain. METHODS This randomized, double-blind, double-placebo-controlled study compared nebulized and intravenous fentanyl (1.5 micro g/kg). Group I received intravenous fentanyl and nebulized saline. Group II received nebulized fentanyl and intravenous(More)