Learn More
We studied the effects of low-frequency transcranial magnetic stimulation (TMS) on motor cortex excitability in humans. TMS at 0.1 Hz for 1 hour did not change cortical excitability. Stimulation at 0.9 Hz for 15 minutes (810 pulses), similar to the parameters used to induce long-term depression (LTD) in cortical slice preparations and in vivo animal(More)
Motor cortex stimulation has both excitatory and inhibitory effects on ipsilateral muscles. Excitatory effects can be assessed by ipsilateral motor-evoked potentials (iMEPs). Inhibitory effects include an interruption of ipsilateral voluntary muscle activity known as the silent period (iSP) and a reduction in corticospinal excitability evoked by(More)
Cortical activity depends on the balance between excitatory and inhibitory influences. Several different excitatory and inhibitory systems in the human motor cortex can be tested by transcranial magnetic stimulation (TMS). While considerable information is known about these different inhibitory and excitatory phenomena individually, how they are related to(More)
Transcranial magnetic stimulation can be used to non-invasively study inhibitory processes in the human motor cortex. Interhemispheric inhibition can be measured by applying a conditioning stimulus to the motor cortex resulting in inhibition of the contralateral motor cortex. Transcranial magnetic stimulation can also be used to demonstrate ipsilateral(More)
Animal studies have shown that cerebellar projections influence both excitatory and inhibitory neurones in the motor cortex but this connectivity has yet to be demonstrated in human subjects. In human subjects, magnetic or electrical stimulation of the cerebellum 5-7 ms before transcranial magnetic stimulation (TMS) of the motor cortex decreases the(More)
Intracortical inhibition and facilitation in different representations of the human motor cortex. J. Neurophysiol. 80: 2870-2881, 1998. Intracortical inhibition (ICI) and intracortical facilitation (ICF) of the human motor cortex can be studied with paired transcranial magnetic stimulation (TMS). Plastic changes and some neurological disorders in humans are(More)
Short-interval intracortical inhibition (SICI) is a widely used method to study cortical inhibition, and abnormalities have been found in several neurological and psychiatric disorders. Previous studies suggested that SICI involves two phases and the first phase may be explained by axonal refractoriness. Our objectives are to further investigate the(More)
OBJECTIVE To assess the acute effects of dextromethorphan (DM) on human motor cortical excitability. BACKGROUND DM, a noncompetitive N-methyl-D-aspartate receptor antagonist, has recently attracted clinical interest for its potential as a neuroprotective agent in various models of excitotoxicity. We were interested in learning whether this drug can(More)
Experimental models of Parkinson's disease have demonstrated abnormal synaptic plasticity in the corticostriatal system, possibly related to the development of levodopa-induced dyskinesias (LID). We tested the hypothesis that LID in Parkinson's disease is associated with aberrant plasticity in the human motor cortex (M1). We employed the paired associative(More)
We used transcranial magnetic stimulation (TMS) to study the time course of corticospinal excitability before and after brisk thumb abduction movements, either in a simple reaction time (RT) paradigm or self-paced. Premovement increase in corticospinal excitability began about 20 msec earlier for self-paced compared with simple RT movements. For both simple(More)