Robert Charles Jennings

Learn More
Photosystem I with its full antenna complement (PSI-LHCI) has been prepared by mild detergent solubilization with octyl beta-D-glucopyranoside from maize thylakoids. A preliminary polypeptide analysis is presented. At room temperature, the steady-state fluorescence derives from an almost perfectly thermalized state, as demonstrated by a Stepanov analysis,(More)
A photosystem I preparation from maize, containing its full antenna complement (PSI-200) and in which detergent effects on chlorophyll coupling are almost completely absent, has been studied by time-resolved fluorescence techniques with approximately 5 ps resolution at 280 and 170 K in the wavelength interval of 690-780 nm. The data have been analyzed in(More)
Evidence is presented, by means of both fluorescence and action spectroscopy, that a small, spectroscopically heterogeneous population of both Chl a and Chl b molecules is present in isolated spinach thylakoids and is active in photoinhibition. The broadness of the action spectrum suggests that degraded or incompletely assembled pigment-protein complexes(More)
The intact photosystem I of maize containing its full antenna complement (PSI-200) has been purified and fractionated into the core and outer antenna (LHCI) components. It is demonstrated by absorption and fluorescence spectroscopy that at least 80% of the long wavelength absorbing antenna pigments (red forms) are located in LHCI. Absorption spectra in the(More)
The average fluorescence decay lifetimes, due to reaction centre photochemical trapping, were calculated for wavelengths in the 690- to 770-nm interval from the published fluorescence decay-associated emission spectra for Photosystem I (PSI)-light-harvesting complex of Photosystem I (LHCI) [Biochemistry 39 (2000) 6341] at 280 and 170 K. For 280 K, the(More)
The chlorophyll-protein complexes that form the antenna system of photosystem II have been purified and analyzed in terms of the commonly observed chlorophyll spectral forms. With the exception of chlorophyll b, which is known to be associated with the complexes comprising the outer antenna (LHCII, CP24, CP26, CP29), the spectral forms occur with similar(More)
One of the strains of the marine green alga Ostreobium sp. possesses an exceptionally large number of long wavelength absorbing chlorophylls (P. Haldall, Biol. Bull. 134, 1968, 411-424) as evident from a distinct shoulder in the absorption spectrum at around 710 nm while in the other strain this shoulder is absent. Therefore, Ostreobium offers a unique(More)
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known(More)
The minor photosystem II antenna complex CP29(Lhcb-4) has been reconstituted in vitro with the Lhcb-4 apoprotein, overexpressed in Escherichia coli, and the native pigments. Modulation of the pigment composition during reconstitution yields binding products with markedly different chlorophyll a/b binding ratios even though the total number of bound(More)
Ferredoxin-NADP reductase accounts for about 50% of the NADPH diaphorase activity of spinach leaf homogenates. The enzyme is bound to thylakoid membranes, but can be slowly extracted by aqueous buffers. Ferredoxin-NADP reductase can be extracted from the membranes by a 1- to 2-min treatment with a low concentration of trypsin. This treatment completely(More)