Learn More
Various connections between 2-D gravity and KdV, dKdV, inverse scattering, etc. are established. For KP we show how to extract from the dispersionless limit of the Fay differential identity of Takasaki-Takebe the collection of differential equations for F = log(τ dKP) which play the role of Hirota type equations in the dispersionless theory. In [7] we(More)
This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation. a r t i c l e i n f o a b s t r a c t Results are presented from searches for the standard model Higgs boson in proton–proton collisions at √ s = 7 and 8 TeV in the Compact(More)
The focus of new service development continues to move from network services towards application services. This is driven by many factors, such as converged networks, ambient networks and seamless mobility. These and other efforts enable customers to move from one service provider to another based on the availability of desired application services, as well(More)
Basic quantities related to 2-D gravity, such as Polyakov extrinsic action, Nambu-Goto action, geometrical action, and Euler characteristic are studied using generalized Weierstrass-Enneper (GWE) inducing of surfaces in R 3. Connection of the GWE inducing with conformal immersion is made and various aspects of the theory are shown to be invariant under the(More)
We show how the quantum potential arises in various ways and trace its connection to quantum fluctuations and Fisher information along with its realization in terms of Weyl curvature. It represents a genuine quantization factor for certain classical systems as well as an expression for quantum matter in gravity theories of Weyl-Dirac type. Many of the facts(More)