Robert C. Unfer

Learn More
New cationic pentablock copolymers of poly(diethylaminoethylmethacrylate) (PDEAEM), poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)--PDEAEM-b-PEO-b-PPO-b-PEO-b-PDEAEM--synthesized in our laboratory were investigated for their potential as non-viral vectors for gene therapy. Agarose gel studies showed that the copolymers effectively condensed(More)
Human immunity to alpha(1,3)Galactosyl epitopes (alpha Gal) may provide the means for a successful cancer gene therapy that uses the immune system to identify and to destroy tumor cells expressing the suicide gene alpha(1,3)Galactosyltransferase (alpha GT). Innate antibody specific for cell surface alpha Gal constitutes a high percentage of circulating IgG(More)
Novel cationic pentablock copolymers based on poly(2-diethylaminoethylmethacrylate) (PDEAEM) and Pluronic F127 were evaluated as non-viral gene delivery vectors from a physiochemical point of view for stability and transfection efficiency in complete growth media. A novel strategy was introduced to sterically stabilize the polyplexes of such Pluronic-based(More)
Feline Infectious Peritonitis Virus (FIPV) is a coronavirus that induces an often fatal, systemic infection in cats. Various vaccines designed to prevent FIPV infection have been shown to exacerbate the disease, probably due to immune enhancement mediated by virus-specific immunoglobulins against the outer envelope (S) protein. An effective vaccine would be(More)
The hyperacute immune response in humans is a potent mechanism of xenograft rejection mediated by complement-fixing natural antibodies recognizing alpha(1,3)-galactosyl epitopes (alphaGal) not present on human cells. We exploited this immune mechanism to create a whole cell cancer vaccine to treat melanoma tumors. B16 melanoma vaccines genetically(More)
We report gene transfer to the normal and injured murine pulmonary circulation via systemic (intravascular) and airway (intratracheal) delivery of novel polycationic liposomes (imidazolium chloride, imidazolinium chloride-cholesterol, and ethyl phosphocholine). With use of the reporter genes chloramphenicol acetyltransferase (CAT) or human placental(More)
Efficient gene delivery is a critical obstacle for gene therapy that must be overcome. Until current limits of gene delivery technology are solved, identification of systems with bystander effects is highly desirable. As an anticancer agent, radioactive iodine 131I has minimal toxicity. The physical characteristics of 131I decay allow radiation penetration(More)
Novel pentablock copolymers of poly(diethylaminoethylmethacrylate) (PDEAEM), poly(ethylene oxide) (PEO), and poly(propylene oxide) (PPO), (PDEAEM-b-PEO-b-PPO-b-PEO-b-PDEAEM), were synthesized as vectors for gene delivery, and were tested for their biocompatibility on SKOV3 (human ovarian carcinoma) and A431 (human epidermoid cancer) cell lines under(More)
We have demonstrated that the rat sodium iodide symporter (rNIS) and 131I can effectively induce growth arrest of human prostate tumor xenografts [Mitrofanova, E., Unfer, R., Vahanian, N., Daniels, W., Roberson, E., Seregina, T., Seth, P., and Link, C. (2004). Rat sodium iodide symporter (rNIS) for radioiodide therapy of cancer. Clin. Cancer Res. 10,(More)
Design and development of new approaches for targeted radiotherapy of cancer and improvement of therapeutic index by more local radiation therapy are very important issues. Adenovirus-mediated delivery of the sodium iodide symporter (NIS) gene to cancer cells is a powerful technique to concentrate lethal radiation in tumor cells and eradicate tumors with(More)