Robert C Risinger

Learn More
OBJECTIVE Cocaine-related cues have been hypothesized to perpetuate drug abuse by inducing a craving response that prompts drug-seeking behavior. However, the mechanisms, underlying neuroanatomy, and specificity of this neuroanatomy are not yet fully understood. METHOD To address these issues, experienced cocaine users (N=17) and comparison subjects(More)
Modern theories of drug dependence hold the hedonic effects of drug-taking central to understanding the motivation for compulsive drug use. Previous neuroimaging studies have begun to identify brain regions associated with acute drug effects after passive delivery. In this study, a more naturalistic model of cocaine self-administration (SA) was employed in(More)
Levo-tetrahydropalmatine (l-THP) is an alkaloid constituent of plants from the botanical genera Corydalis and Stephania and is contained in many traditional Chinese herbal preparations. In addition to its low-affinity antagonism of D2 dopamine (DA) receptors, we report that l-THP functions as a higher-affinity antagonist at D1 DA receptors and interacts(More)
Human lesion and functional imaging data suggest a central role for the amygdala in the processing of negative stimuli. To determine whether the amygdala's role in affective processing extends beyond negative stimuli, subjects viewed pictures that varied in emotional content (positive vs negative valence) and arousal level (high vs low) while undergoing(More)
Addiction is a chronic relapsing disorder hypothesized to be produced by drug-induced plasticity that renders individuals vulnerable to craving-inducing stimuli such as re-exposure to the drug of abuse. Drug-induced plasticity that may result in the addiction phenotype includes increased excitatory signaling within corticostriatal pathways that correlates(More)
An improved functional MRI (fMRI) method for the reduction of susceptibility artifacts has been utilized to measure blood oxygen level-dependent (BOLD) responses to acute cocaine administration in the human brain of cocaine users. Intravenous administration of cocaine (20 mg/70 kg) activated mesolimbic and mesocortical dopaminergic projection regions and(More)
We introduce a fast and robust spatial-spectral encoding method, which enables acquisition of high resolution short echo time (13 ms) proton spectroscopic images from human brain with acquisition times as short as 64 s when using surface coils. The encoding scheme, which was implemented on a clinical 1.5 Tesla whole body scanner, is a modification of an(More)
OBJECTIVE The authors' goal was to determine potential hemodynamic consequences of methylphenidate on functional magnetic resonance imaging (MRI) blood-oxygen-level-dependent (BOLD) contrast. METHOD BOLD and perfusion changes were recorded from the motor cortex of six healthy subjects while they performed flexion-extension movements of the right index(More)
Functional magnetic resonance imaging (fMRI) was conducted to observe the effects of cocaine administration on the physiological fluctuations of fMRI signal in two brain regions. Seven long-term cocaine users with an average age of 32 years and 8 years of cocaine use history were recruited for the study. A T2*-weighted fast echo-planar imaging (EPI) pulse(More)
BACKGROUND Human expectation of psychoactive drugs significantly alters drug effects and behavioral responses. However, their neurophysiological mechanisms are not clear. This study investigates how cocaine expectation modulates human brain responses to acute cocaine administration. METHODS Twenty-six right-handed non-treatment-seeking regular cocaine(More)