Robert C. Dunn

Learn More
Langmuir-Blodgett (LB) monolayers and bilayers of L-alpha-dipalmitoylphosphatidylcholine (DPPC), fluorescently doped with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diIC18), are studied by confocal microscopy, atomic force microscopy (AFM), and near-field scanning optical microscopy (NSOM). Beyond the resolution limit of confocal(More)
Small optical microresonators that support whispering gallery mode (WGM) resonances are emerging as powerful new platforms for biosensing. These resonators respond to changes in refractive index and potentially offer many advantages for label-free sensing. Recently we reported an approach for detecting WGM resonances based on fluorescence imaging and(More)
Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM)(More)
Changes in nuclear pore complex (NPC) structure are studied following treatments modifying the cisternal calcium levels located between the two lipid bilayers that together form the nuclear envelope. Since the NPC forms the only known passageway across the nuclear envelope, it plays a central role in nucleocytoplasmic transport. Understanding the origin of(More)
A new microscopic technique is demonstrated that combines attributes from both near-field scanning optical microscopy (NSOM) and fluorescence resonance energy transfer (FRET). The method relies on attaching the acceptor dye of a FRET pair to the end of a near-field fiber optic probe. Light exiting the NSOM probe, which is nonresonant with the acceptor dye,(More)
Some of the most important trafficking processes in cells involve transport across the nuclear envelope. Whether it is the import of transcription factors or the export of RNA, the only known portal across the double lipid bilayer that forms the nuclear envelope are the macromolecular pores known as nuclear pore complexes (NPCs). Understanding how signals(More)
Near-field scanning optical microscopy (NSOM) is an emerging optical technique that enables simultaneous high-resolution fluorescence and topography measurements. Here we discuss selected applications of NSOM to biological systems that help illustrate the utility of its high spatial resolution and simultaneous collection of both fluorescence and topography.(More)
Whispering gallery mode (WGM) resonators are small, radially symmetric dielectrics that recirculate light through continuous total internal reflection. High-Q resonances are observed that shift in response to changes in surrounding refractive index, leading to many applications in label-free sensing. Surface binding measurements with WGM resonators have(More)
Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM(More)
High-resolution near-field scanning optical microscopy (NSOM) fluorescence and topographic images of L-alpha-dipalmitoylphosphatidylcholine (DPPC) monolayers doped with a fluorescent dye are presented. DPPC monolayers are deposited onto mica substrates from the air-water interface at several surface pressures using the Langmuir-Blodgett technique.(More)