Robert Bryn Fenwick

Learn More
We review the role conformational ensembles can play in the analysis of biomolecular dynamics, molecular recognition, and allostery. We introduce currently available methods for generating ensembles of biomolecules and illustrate their application with relevant examples from the literature. We show how, for binding, conformational ensembles provide a way of(More)
Long-range correlated motions in proteins are candidate mechanisms for processes that require information transfer across protein structures, such as allostery and signal transduction. However, the observation of backbone correlations between distant residues has remained elusive, and only local correlations have been revealed using residual dipolar(More)
Residual dipolar couplings (RDCs) are unique probes of the structural and dynamical properties of biomolecules on the sub-millisecond time scale that can be used as restraints in ensemble molecular dynamics simulations to study the relationship between macromolecular motion and biological function. To date, however, this powerful strategy is applicable only(More)
In estrogen receptor-negative breast cancer patients, metastatic relapse usually occurs in the lung and is responsible for the fatal outcome of the disease. Thus, a better understanding of the biology of metastasis is needed. In particular, biomarkers to identify patients that are at risk of lung metastasis could open the avenue for new therapeutic(More)
Molecular recognition plays a central role in many biological processes. For enzymatic reactions and slow protein–protein recognition events, turnover rates and on-rates in the millisecond to second time scale have been connected to internal protein dynamics detected with atomic resolution by NMR spectroscopy, and in particular conformational sampling could(More)
The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and(More)
Although serine proteases are found ubiquitously in both eukaryotes and prokaryotes, and they comprise the largest of all of the peptidase families, their dynamic motions remain obscure. The backbone dynamics of the coagulation serine protease, apo-thrombin (S195M-thrombin), were compared to the substrate-bound form (PPACK-thrombin). R1, R2, 15N-{1H}NOEs,(More)
The synchronization of native state motions as they transition between microstates influences catalysis kinetics, mediates allosteric interactions, and reduces the conformational entropy of proteins. However, it has proven difficult to describe native microstates because they are usually minimally frustrated and may interconvert on the micro- to millisecond(More)
Protein dynamics occurring on a wide range of timescales play a crucial role in governing protein function. Particularly, motions between the globular rotational correlation time (τc ) and 40 μs (supra-τc window), strongly influence molecular recognition. This supra-τc window was previously hidden, owing to a lack of experimental methods. Recently, we have(More)
Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs)(More)