Robert B. Roden

Learn More
The L1 genes of two human papillomavirus type 16 (HPV16) isolates derived from condylomata acuminata were used to express the L1 major capsid protein in insect cells via recombinant baculoviruses. Both L1 major capsid proteins self-assembled into virus-like particles (VLP) with high efficiency and could be purified in preparative amounts on density(More)
We have used immunofluorescent staining and confocal microscopy to examine the subcellular localization of structural and nonstructural bovine papillomavirus (BPV) proteins in cultured cells that produce infectious virions. When expressed separately, L1, the major capsid protein, showed a diffuse nuclear distribution while L2, the minor capsid protein, was(More)
Autologous serum antibodies to molecules that are aberrantly expressed in tumors represent potential biomarkers for early diagnosis of cancer. In this study, we identified the homeobox gene HOXA7 as encoding an antigen in epithelial tumors of the ovary. These tumors are thought to arise from the simple epithelium lining the ovarian surface, but they often(More)
We report a system for generating infectious papillomaviruses in vitro that facilitates the analysis of papillomavirus assembly, infectivity, and serologic relatedness. Cultured hamster BPHE-1 cells harboring autonomously replicating bovine papillomavirus type 1 (BPV1) genomes were infected with recombinant Semliki Forest viruses that express the structural(More)
Ovarian carcinomas are thought to arise from cells of the ovarian surface epithelium by mechanisms that are poorly understood. Molecules associated with neoplasia are potentially immunogenic, but few ovarian tumor antigens have been identified. Because ovarian carcinomas can elicit humoral responses in patients, we searched for novel tumor antigens by(More)
To initiate an investigation of the initial step in papillomavirus infection, we have examined the interaction of bovine papillomavirus type 1 (BPV) virions with C127 cells by two assays, binding of radioiodinated BPV virions to cell monolayers and BPV-induced focal transformation. Under physiological conditions, the labeled virions bound to the cell(More)
BACKGROUND Studies in animal models have shown that systemic immunization with a papillomavirus virus-like particle (VLP) vaccine composed of L1, a major structural viral protein, can confer protection against subsequent experimental challenge with the homologous virus. Here we report results of a double-blind, placebo-controlled, dose-escalation trial to(More)
Complexes between bovine papillomavirus type 1 (BPV1) and examples of two sets of neutralizing, monoclonal antibodies (mAb) to the major capsid protein (L1) were analyzed by low-dose cryo-electron microscopy and three-dimensional (3D) image reconstruction to 13 A resolution. mAb #9 is representative of a set of neutralizing antibodies that can inhibit viral(More)
BPHE-1 cells, which harbor 50 to 200 viral episomes, encapsidate viral genome and generate infectious bovine papillomavirus type 1 (BPV1) upon coexpression of capsid proteins L1 and L2 of BPV1, but not coexpression of BPV1 L1 and human papillomavirus type 16 (HPV16) L2. BPV1 L2 bound in vitro via its C-terminal 85 residues to purified L1 capsomers, but not(More)
We have determined that three type-specific and conformationally dependent monoclonal antibodies, H16.E70, H16.U4, and H16.V5, neutralize pseudotype human papillomavirus type 16 (HPV16) virions in vitro. H16.U4 and H16.V5 neutralized pseudotype virions derived from the German HPV16 variant 114K and the Zairian variant Z-1194 with equal efficiency. In(More)