Learn More
Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled(More)
The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical(More)
Although researchers have begun cataloging the incredible diversity of bacteria found in soil, we are largely unable to interpret this information in an ecological context, including which groups of bacteria are most abundant in different soils and why. With this study, we examined how the abundances of major soil bacterial phyla correspond to the biotic(More)
Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global(More)
For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing(More)
The ability of plants to supply water to their leaves is intimately associated with survival. Water supply to leaves depends on maintaining an intact water column in the xylem from the roots to shoots. Because this hydraulic pathway is under tension, it is vulnerable to breakage through the induction of air emboli (cavitation). Although the physiological(More)
The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink. Here we investigate(More)
The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which(More)
Here we describe a quantitative PCR-based approach to estimating the relative abundances of major taxonomic groups of bacteria and fungi in soil. Primers were thoroughly tested for specificity, and the method was applied to three distinct soils. The technique provides a rapid and robust index of microbial community structure.
The correct timing of flowering is essential for plants to maximize reproductive success and is controlled by environmental and endogenous signals. We report that nitric oxide (NO) repressed the floral transition in Arabidopsis thaliana. Plants treated with NO, as well as a mutant overproducing NO (nox1), flowered late, whereas a mutant producing less NO(More)