Robert B. Driesang

Learn More
Ionic mechanisms underlying low-threshold (LTO) and high-threshold (HTO) oscillations occurring in a class of spiny neurons within the basolateral amygdaloid complex (see companion paper) were investigated in slice preparations of the guinea pig amygdala in vitro. LTOs were abolished through local application of tetrodotoxin (TTX, 10-20 microM) or a(More)
Intracellular recordings in the guinea pig and cat basolateral amygdaloid (BL) complex maintained as slices in vitro revealed that a subpopulation of neurons (79%) in the lateral (AL) and basolateral (ABl) nuclei generated two types of slow oscillations of the membrane potential upon steady depolarization from resting potential. The cells were of a stellate(More)
1. In the stick insect Carausius morosus the properties of the neuronal network governing the femur-tibia joint depend on the behavioral state of the animal. In the inactive animal flexion of the femur-tibia joint results in the generation of a resistance reflex, while in the active animal the same stimulus induces the so-called active reaction, the first(More)
The complicated response characteristics of the identified nonspiking interneuron type E4 upon elongation stimuli to the femoral chordotonal organ (fCO) can be obtained by a computer simulation using the neuronal network simulator BioSim, if the following assumptions were introduced: (1) The interneurons receive direct excitatory input from position- and(More)
In inactive stick insects, sensory information from the femoral chordotonal organ (fCO) about position and movement of the femur-tibia joint is transferred via local nonspiking interneurons onto extensor and flexor tibiae motoneurons. Information is processed by the interaction of antagonistic parallel pathways at two levels: (1) at the input side of the(More)
Synaptic mechanisms underlying NMDA-mediated responses of neurons in the guinea pig lateral amygdala (AL) were investigated in in vitro slice preparations. Local application of NMDA resulted in initial hyperpolarization of pyramidal-like spiny cells (projection neurons), followed by prolonged depolarization. The slow depolarization represented a direct(More)
The known nonlinearities of the femur-tibia control loop of the stick insect Carausius morosus (enabling the system to produce catalepsy) are already present in the nonspiking interneuron E4: (1) The decay of depolarizations in interneuron E4 following slow elongation movements of the femoral chordotonal organ apodeme could be described by a single(More)
A majority of projection neurons in the lateral amygdala generate oscillatory spike firing in the theta-frequency range, largely due to intrinsic membrane properties. Here we report on the occurrence of spike doublets in about 70% of these cells. Spike doublets consisted of a fast initial and a second slower component, which were mediated by sodium- and(More)
The amygdala is considered a core structure of the so-called limbic system and has been implicated in a variety of functions, including emotional interpretation of sensory information, emotional arousal, emotional memory, fear and anxiety, and related clinical disorders. Despite the clinical and functional importance of the amygdala, it is only recently(More)
The flight motor pattern of the adult locust (Locusta migratoria L.) is able to recover from the loss of the hindwing tegulae. This recovery is due to a functional substitution of the hindwing tegulae by the forewing tegulae (Büschges, Ramirez, and Pearson, 1992). To assess changes in the pathways from the forewing tegulae in the flight system, we(More)
  • 1