Robert B. Dickson

Learn More
Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell(More)
The hormone-dependent human breast cancer cell line MCF-7 secretes transforming growth factor-beta (TGF-beta), which can be detected in the culture medium in a biologically active form. These polypeptides compete with human platelet-derived TGF-beta for binding to its receptor, are biologically active in TGF-beta-specific growth assays, and are recognized(More)
The matrix metalloproteinases (MMPs) are a family of at least fifteen secreted and membrane-bound zinc-endopeptidases. Collectively, these enzymes can degrade all of the components of the extracellular matrix, including fibrallar and non-fibrallar collagens, fibronectin, laminin and basement membrane glycoproteins. MMPs are thought to be essential for the(More)
Matriptase is an epithelial-derived, integral membrane serine protease. The enzyme was initially isolated from human breast cancer cells and has been implicated in breast cancer invasion and metastasis. In the current study, using active matriptase isolated from human milk, we demonstrate that matriptase is able to cleave various synthetic substrates with(More)
Expression of epidermal growth factor (EGF) receptor by human breast cancer tissues has an inverse relationship with expression of the estrogen receptor and may be associated with a poor clinical response. We have studied the regulation of EGF receptor expression in a series of human breast cancer cell lines with varying degrees of estrogen responsiveness.(More)
Tissue remodeling is a key process involved in normal development, wound healing, bone remodeling, and embryonic implantation, as well as pathological conditions such as tumor invasion and metastasis, and angiogenesis. The degradation of the extracellular matrix that is associated with those processes is mediated by a number of families of extracellular(More)
Murine models of human carcinogenesis are exceedingly valuable tools to understand genetic mechanisms of neoplastic growth. The identification of recurrent chromosomal rearrangements by cytogenetic techniques serves as an initial screening test for tumour specific aberrations. In murine models of human carcinogenesis, however, karyotype analysis is(More)
Numerous studies have demonstrated that overexpression of Met, the hepatocyte growth factor(HGF) receptor, plays an important role in tumorigenesis. Met activation can either occur through ligand-independent or -dependent mechanisms, both of which are mediated by a series of proteases and modulators. We studied the protein expression of several components(More)