Learn More
The Fragile X protein FMRP is an RNA binding protein whose targets are not well known; yet, these RNAs may play an integral role in the disease's etiology. Using a biotinylated-FMRP affinity resin, we isolated RNAs from the parietal cortex of a normal adult that bound FMRP. These RNAs were amplified by differential display (DDRT-PCR) and cloned and their(More)
The fragile X mental retardation protein (FMRP) contains three RNA binding domains, two of which the KH2 domain and the C-terminal arginine-glycine-rich (RG-rich) region participate in RNA binding. Because fragile X syndrome is the leading cause of inherited mental retardation, there has been an intensive search for the messenger RNA (mRNA) targets that(More)
FMRP, the fragile X mental retardation protein, is an RNA-binding protein that interacts with approximately 4% of fetal brain mRNA. We have recently shown that a methyltransferase (MT) co-translationally methylates FMRP in vitro and that methylation modulates the ability of FMRP to bind mRNA. Here, we recapitulate these in vitro data in vivo, demonstrating(More)
Translational control at the synapse is thought to be a key determinant of neuronal plasticity. How is such control implemented? We report that small untranslated BC1 RNA is a specific effector of translational control both in vitro and in vivo. BC1 RNA, expressed in neurons and germ cells, inhibits a rate-limiting step in the assembly of translation(More)
The pre-mRNA of the fragile X mental retardation 1 gene (FMR1) is subject to exon skipping and alternative splice site selection, which can generate up to 12 isoforms. The expression and function of these variants in vivo has not yet been fully explored. In the present study, we investigated the distribution of Fmr1 exon 12 and exon 15 isoforms. Exon 12(More)
The C-terminal end of the fragile X mental retardation protein contains a stretch of amino acid residues that are enriched in arginine and glycine. Recent studies using recombinant FMRPs have demonstrated that this region participates in RNA binding in vitro, with calculated Kds ranging from 1-10 nM depending on the RNA. It is known that other(More)
Differential display was used to identify synapse-enriched mRNAs. Of 15 mRNAs initially identified, all were found in multiple synaptoneurosome preparations; 58% were subsequently shown to be enriched in all the preparations by Northern blotting and semiquantitative RT-PCR. RNAs involved in signal transduction, vesicle trafficking, lipid modification and(More)
This report describes an approach for the study of the biology of methylarginine proteins based on the generation of immunological reagents capable of recognizing the methylarginine status of cellular proteins. Two forms of an immunizing peptide were prepared based upon an amino acid sequence motif found most prevalently among verified(More)
PC12 cells are a well-known model of parasympathetic neurons. They have also been used to study the dynamics of heterologously expressed fragile X mental retardation (FMRP) granule trafficking down neurites. Here, we demonstrate that undifferentiated and differentiated PC12 cells harbor endogenous FMRP-containing granules. These granules are not stress(More)
Stress granules contain a large number of post-translationally modified proteins, and studies have shown that these modifications serve as recruitment tags for specific proteins and even control the assembly and disassembly of the granules themselves. Work originating from our laboratory has focused on the role protein methylation plays in stress granule(More)