Robert A. Wilcox

Learn More
We describe here a newly identified member of the human B7 family, designated B7 homolog 3 (B7-H3), that shares 20-27% amino acid identity with other B7 family members. B7-H3 mRNA is not detectable in peripheral blood mononuclear cells, although it is found in various normal tissues and in several tumor cell lines. Expression of B7-H3 protein, however, can(More)
BACKGROUND DYT6 is a primary, early-onset torsion dystonia; however, unlike in DYT1 dystonia, the symptoms of DYT6 dystonia frequently involve the craniocervical region. Recently, two mutations in THAP1, the gene that encodes THAP (thanatos-associated protein) domain-containing apoptosis-associated protein 1 (THAP1), have been identified as a cause of DYT6(More)
Receptor-mediated activation of phospholipase C to generate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] is a ubiquitous signalling pathway in mammalian systems. A family of three IP3 receptor subtype monomers form functional tetramers, which act as effectors for Ins(1,4,5)P3, providing a ligand-gated channel that allows Ca2+ ions to move between cellular(More)
OBJECTIVES Gamma oscillations (30-100 Hz gamma electroencephalographic (EEG) activity) correlate with high frequency synchronous rhythmic bursting in assemblies of cerebral neurons participating in aspects of consciousness. Previous studies in a kainic acid animal model of epilepsy revealed increased intensity of gamma rhythms in background EEG preceding(More)
PURPOSE We previously revealed an interictal increase in intensity of EEG rhythms during quiescent mental activity in the 30- to 100-Hz frequency (gamma) range in primary generalized epilepsy (PGE). We have evidence that there is induction of gamma EEG in normal subjects in response to controlled mental activity. Here we test whether mental tasks further(More)
OBJECTIVE A study was undertaken to identify the gene underlying DYT4 dystonia, a dominantly inherited form of spasmodic dysphonia combined with other focal or generalized dystonia and a characteristic facies and body habitus, in an Australian family. METHODS Genome-wide linkage analysis was carried out in 14 family members followed by genome sequencing(More)
Previous studies have shown that adenophostin A is a potent initiator of the activation of SOCs (store-operated Ca2+ channels) in rat hepatocytes, and have suggested that, of the two subtypes of Ins(1,4,5)P3 receptor predominantly present in rat hepatocytes [Ins(1,4,5)P3R1 (type I receptor) and Ins(1,4,5)P3R2 (type II receptor)], Ins(1,4,5)P3R1s are(More)
The roles of a subregion of the endoplasmic reticulum (ER) and the cortical actin cytoskeleton in the mechanisms by which Ins(1,4,5)P3 induces the activation of store-operated Ca2+ channels (SOCs) in isolated rat hepatocytes were investigated. Adenophostin A, a potent agonist at Ins(1,4,5)P3 receptors, induced ER Ca2+ release and the activation of Ca2+(More)
The novel synthetic analogues D-3-fluoro-myo-inositol 1,5-bisphosphate-4-phosphorothioate, [3F-Ins(1,5)P2-4PS], D-3-fluoro-myo-inositol 1,4-bisphosphate-5-phosphorothioate [3F-Ins(1,4)P2-5PS], and D-3-fluoro-myo-inositol 1-phosphate-4,5-bisphosphorothioate [3F-Ins(1)P-(4,5)PS2] were utilised to define the structure-activity relationships which could produce(More)
We have synthesized the first amino-substituted inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] analogue, D-3-amino-3-deoxy-myo-Ins(1,4,5)P3 (9). Although 9 is a full agonist at the Ca2+ mobilizing Ins(1,4,5)P3 receptor at pH 7.2 and 7.6, it is apparently a high intrinsic activity partial agonist at pH 6.8, releasing only 80% of the Ins(1,4,5)P3-sensitive Ca2+(More)