Robert A. Spicer

Learn More
The range of possibilities for future climate evolution needs to be taken into account when planning climate change mitigation and adaptation strategies. This requires ensembles of multi-decadal simulations to assess both chaotic climate variability and model response uncertainty. Statistical estimates of model response uncertainty, based on observations of(More)
The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate and to influence monsoon intensity. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about uplift rates of the Tibetan plateau, but the precise history of the uplift of(More)
Climate Leaf Analysis Multivariate Program (CLAMP) is a versatile technique for obtaining quantitative estimates for multiple terrestrial palaeoclimate variables from woody dicot leaf assemblages. To date it has been most widely applied to the Late Cretaceous and Tertiary of the midto high latitudes because of concerns over the relative dearth of(More)
The reconstruction of the climate in the Miocene Shanwang basin is an important link in understanding past climate and environmental changes in East Asia. A recent study showed that the mean annual temperature (MAT) estimates derived from leaf margin analysis (LMA) and the Climate Leaf Analysis Multivariate Program (CLAMP) conflicted with and were(More)
Eocene palynological samples from 37 widely distributed sites across China were analysed using co-existence approach to determine trends in space and time for seven palaeoclimate variables: Mean annual temperature, mean annual precipitation, mean temperature of the warmest month, mean temperature of the coldest month, mean annual range of temperature, mean(More)
The Deccan Trap continental flood basalt eruptions of India occurred c. 67–63 Ma, thus spanning the Cretaceous–Tertiary boundary (65 Ma). Deccan eruptions were coeval with an interval of profound global environmental and climatic changes and widespread extinctions, and this timing has sparked controversy regarding the relative influence of Deccan volcanism(More)
Our understanding of polar vegetation and climate through time has expanded enormously in the past five years as a consequence of improved logistics, detailed studies of plant fossils in their proper sedimentological context, and the development of sophisticated physiognomic methods for extracting the climate signal present in plant fossil assemblages.(More)
The extent to which the leaves of woody dicots encode in their physiognomy the climatic conditions that exist during dormancy was tested by sampling 20 sites along an approximately west-east transect across European Russia, the Crimean Peninsula, Western Siberia, and central Eastern Siberia. This transect encompassed the most extreme mean annual temperature(More)
For the first time, the Late Sagwon Flora is described from the upper beds of the Prince Creek Formation (Upper Paleocene) at the Sagavanirktok River (northern Alaska Peninsula). The flora is dominated by the angiosperm Tiliaephyllum brooksense Moiseeva et Herman sp. nov. and conifer Metasequoia occidentalis (Newb.) Chaney. The Late Sagwon Flora is most(More)