Robert A. Sikes

Learn More
LNCaP lineage-derived human prostate cancer cell lines C4-2 and C4-2B4 acquire androgen independence and osseous metastatic potential in vivo. Using C4-2 and C4-2B4 the goals of the current investigation were 1) to establish an ideal bone xenograft model for prostate cancer cells in intact athymic or SCID/bg mice using an intraosseous route of tumor cell(More)
Transforming growth factor beta (TGF-beta) signaling, which regulates multiple cellular processes including proliferation, apoptosis, and differentiation, plays an important but incompletely understood role in normal and cancerous tissues. For instance, although TGF-beta functions as a tumor suppressor in the premalignant stages of tumorigenesis,(More)
BACKGROUND Clinically, the lethal phenotypes of human prostate cancer are characterized by their progression to androgen-independence and their propensity to form osseous metastases. We reported previously on the establishment of androgen-independent (AI) human prostate cancer cell lines derived from androgen-dependent (AD) LNCaP cells, with androgen(More)
Progression of prostate cancer ultimately results in a disease that is refractory to hormone ablation therapy but nevertheless continues to require the androgen receptor. Progression to hormone refractory disease is often correlated with overexpression of growth factors and receptors capable of establishing autocrine and/or paracrine growth-stimulatory(More)
During prostate cancer progression, invasive glandular epithelial cells move out of the ductal-acinar architecture and through the surrounding basement membrane. Extracellular matrix proteins and associated soluble factors in the basal lamina and underlying stroma are known to be important regulators of prostate cell behaviors in both normal and malignant(More)
Prostate cancer (PCa) is no exception to the multi-step process of metastasis. As PCa progresses, changes occur within the microenvironments of both the malignant cells and their targeted site of metastasis, enabling the necessary responses that result in successful translocation. The majority of patients with progressing prostate cancers develop skeletal(More)
IGFBP-rP1/mac25 is a recently described member of the insulin-like growth factor binding protein (IGFBP) family. It has structural homology to the other members of the IGFBP family but has a lower affinity for insulin-like growth factors (IGFs). In previous studies using RNA blot hybridization, it was shown that the expression of IGFBP-rP1/mac25 was(More)
Osteocalcin (OC), a noncollagenous bone matrix protein, is expressed in high levels by osteoblasts. To determine whether the OC promoter mediates cell-specific gene expression in cells of osteoblast lineage, we constructed a recombinant adenovirus, Ad-OC-TK, which contains the OC promoter that drives the expression of herpes simplex virus thymidine kinase(More)
Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working(More)
The recent discovery of sodium (Na(+)) channel expression in human prostate cancer (PCa) cells led us to investigate the potential use of neuronal Na(+) channel blockers as inhibitors of PCa cells. Our initial studies discovered two classes of Na(+) channel blockers that were effective inhibitors of PCa cell proliferation. Both hydroxyamides (compounds 1(More)