Robert A. Nissenson

Learn More
To test the hypothesis that PTH-related peptide (PTHrP) is a paracrine regulator of endochondral bone development, we localized PTHrP and its cognate receptor during normal skeletal development at both messenger RNA (mRNA) and protein levels and compared the growth plate phenotypes of PTHrP-deficient [(PTHrP(-/-)] mice to those of normal littermates(More)
We are creating families of designer G protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like(More)
The seven transmembrane helices of serpentine receptors comprise a conserved switch that relays signals from extracellular stimuli to heterotrimeric G proteins on the cytoplasmic face of the membrane. By substituting histidines for residues at the cytoplasmic ends of helices III and VI in retinal rhodopsin, we engineered a metal-binding site whose occupancy(More)
UNLABELLED RANKL and OPG gene expressions were measured with and without PTH at different stages of osteoblast development. Mouse stromal cells were cultured in osteoblast differentiating conditions, and RANKL, OPG, COLI, ALP, OC, and PTHRec genes were measured using qRT-PCR. OPG:RANKL ratios indicate that PTH may induce a possible switch in the regulatory(More)
A variety of solid tumors secrete proteins that are immunochemically distinct from parathyroid hormone (PTH) but activate PTH-responsive adenylate cyclase. Such PTH-like proteins have been proposed as mediators of the hypercalcemia and hypophosphatemia frequently associated with malignancies. We purified to apparent homogeneity a PTH-like protein with a(More)
Osteoblasts are essential for maintaining bone mass, avoiding osteoporosis, and repairing injured bone. Activation of osteoblast G protein-coupled receptors (GPCRs), such as the parathyroid hormone receptor, can increase bone mass; however, the anabolic mechanisms are poorly understood. Here we use "Rs1," an engineered GPCR with constitutive G(s) signaling,(More)
After stimulation with agonist, G protein-coupled receptors (GPCRs) activate G proteins and become phosphorylated by G protein-coupled receptor kinases (GRKs), and most of them translocate cytosolic arrestin proteins to the cytoplasmic membrane. Agonist-activated GPCRs are specifically phosphorylated by GRKs and are targeted for endocytosis by arrestin(More)
Tumor-derived transforming growth factors (TGF) have been proposed as possible mediators of hypercalcemia in malignancy. We have studied the action of recombinant human TGF-alpha in cultured bone cells and in bone explant cultures. In clonal UMR-106 rat osteosarcoma cells, TGF-alpha and epidermal growth factor (EGF) were equipotent in binding to the EGF(More)
STUDY OBJECTIVE To measure the serum levels of a newly described parathyroid hormone-like protein (PLP) which was isolated from malignant tumors associated with hypercalcemia, and determine whether PLP is a humoral factor in malignancy-associated hypercalcemia. DESIGN A cross-sectional study of serum levels of PLP using a newly developed radioimmunoassay.(More)
Experiments were performed to determine whether the TSH receptor-adenylate cyclase (AC) system in benign and malignant thyroid neoplasms differs from the TSH receptor-AC system in normal thyroid tissue removed from the same patients. TSH binding and AC assays were performed using the same in vitro conditions. TSH binding was rapid, reversible, saturable,(More)