Robert A. Niederman

Learn More
In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll-protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we(More)
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in(More)
The oxidation of the global ocean by cyanobacterial oxygenic photosynthesis, about 2,100 Myr ago, is presumed to have limited anoxygenic bacterial photosynthesis to oceanic regions that are both anoxic and illuminated. The discovery of oxygen-requiring photosynthetic bacteria about 20 years ago changed this notion, indicating that anoxygenic bacterial(More)
Radioactivity eventually destined for the chromatophore membrane of Rhodopseudomonas sphaeroides was shown in pulse-chase studies to appear first in a distinct pigmented fraction. The material formed an upper pigmented band which sedimented more slowly than chromatophores when cell-free extracts were subjected directly to rate-zone sedimentation on sucrose(More)
Highly purified preparations of cytoplasmic and outer membrane were isolated from aerobically grown Rhodospirillum rubrum lysed by sequential treatment with lysozyme, ethylenediaminetetraacetate, and Brij 58. The membranes were resolved and separated from other cellular constitutents by a combination of velocity and isopyknic sedimentation in sucrose(More)
In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the(More)
Photosynthesis relies on the delicate interplay between a specific set of membrane-bound pigment-protein complexes that harvest and transport solar energy, execute charge separation, and conserve the energy. We have investigated the organization of the light-harvesting (LH) and reaction-center (RC) complexes in native bacterial photosynthetic membranes of(More)
Chromatophore membrane formation was induced in low-aeration suspensions of Rhodopseudomonas sphaeroides and highly purified chromatophore preparations were isolated at various intervals between 4 and 18 h. The levels of several functional components associated with the isolated strucures were investigated. B-875, the light-harvesting bacteriochlorophyll(More)
Studies on membrane development in purple bacteria during adaptation to alterations in light intensity and oxygen tension are reviewed. Anoxygenic phototrophic such as the purple α-proteobacterium Rhodobacter sphaeroides have served as simple, dynamic, and experimentally accessible model organisms for studies of the photosynthetic apparatus. A major(More)
The results of a detailed structural and functional proteomic analysis of intracytoplasmic membrane (ICM) assembly in the model purple phototrophic bacterium Rhodobacter sphaeroides are reviewed in this report. Proteomics approaches have focused upon identification of membrane proteins temporally expressed during ICM development and spatially localized(More)