Learn More
Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using(More)
The paper describes the use of an active handheld micromanipulator, known as Micron, for micromanipulation of cells. The device enables users to manipulate objects on the order of tens of microns in size, with the natural ease of use of a fully handheld tool. Micron senses its own position using a purpose-built microscale optical tracker, estimates the(More)
We describe the design and performance of a handheld actively stabilized tool to increase accuracy in microsurgery or other precision manipulation. It removes involuntary motion, such as tremor, by the actuation of the tip to counteract the effect of the undesired handle motion. The key components are a 3-degree-of-freedom (DOF) piezoelectric manipulator(More)
Performing micromanipulation and delicate operations in submillimeter workspaces is difficult because of destabilizing tremor and imprecise targeting. Accurate micromanipulation is especially important for microsurgical procedures, such as vitreoretinal surgery, to maximize successful outcomes and minimize collateral damage. Robotic aid combined with(More)
Portable mobile robots, in the size class of 20 kg or less, could be extremely valuable as autonomous reconnaissance platforms in urban hostage situations and disaster relief. We have developed a prototype urban robot on a novel chassis with articulated tracks that enable stair climbing and scrambling over rubble. Autonomous navigation capabilities of the(More)
Precise movement during micromanipulation becomes difficult in submillimeter workspaces, largely due to the destabilizing influence of tremor. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator's goals is available, virtual fixtures have been shown to greatly(More)
The detection and tracking of moving objects is an essential task in robotics. The CMU-RI Navlab group has developed such a system that uses a laser scanner as its primary sensor. We will describe our algorithm and its use in several applications. Our system worked successfully on indoor and outdoor platforms and with several different kinds and(More)
This paper presents the first experimental results from human users of a new 6-degree-of-freedom handheld micromanipulator. This is the latest prototype of a fully-handheld system, known as "Micron," which performs active compensation of hand tremor for microsurgery. The manipulator is a miniature Gough-Stewart platform incorporating linear ultrasonic(More)
In microsurgery, a surgeon often deals with anatomical structures of sizes that are close to the limit of the human hand accuracy. Robotic assistants can help to push beyond the current state of practice by integrating imaging and robot-assisted tools. This paper demonstrates control of a handheld tremor reduction micromanipulator with visual servo(More)
This paper presents the design and analysis of a handheld manipulator for vitreoretinal microsurgery and other biomedical applications. The design involves a parallel micromanipulator utilizing six piezoelectric linear actuators, combining compactness with a large range of motion and relatively high stiffness. Given the available force of the actuators, the(More)