Robert A Goodnow

Learn More
Leukotriene B(4) (LTB(4)) is a lipid inflammatory mediator derived from membrane phospholipids by the sequential actions of cytosolic phospholipase A2 (PLA2), 5-lipoxygenase (5-LO) and leukotriene A(4) (LTA(4)) hydrolase. Several inflammatory diseases, including asthma, chronic obstructive pulmonary disease, arthritis and inflammatory bowel disease, have(More)
Complex mixtures of DNA encoded small molecules may be readily interrogated via high-throughput sequencing. These DNA encoded libraries (DELs) are commonly used to discover molecules that interact with pharmaceutically relevant proteins. The chemical diversity displayed by the library is key to successful discovery of potent, novel, and drug-like chemical(More)
A computer-based method was developed for rapid and automatic identification of potential "frequent hitters". These compounds show up as hits in many different biological assays covering a wide range of targets. A scoring scheme was elaborated from substructure analysis, multivariate linear and nonlinear statistical methods applied to several sets of one(More)
The inhibition of LTB(4) binding to and activation of G-protein-coupled receptors BLT1 and BLT2 is the premise of a treatment for several inflammatory diseases. In a lead optimization effort starting with the leukotriene B(4) (LTB(4)) receptor antagonist (2), members of a series of 3,5-diarylphenyl ethers were found to be highly potent inhibitors of LTB(4)(More)
The generation of novel structures amenable to rapid and efficient lead optimization comprises an emerging strategy for success in modern drug discovery. Small molecule libraries of sufficient size and diversity to increase the chances of discovery of novel structures make the high throughput synthesis approach the method of choice for lead generation.(More)
The current drug discovery processes in many pharmaceutical companies require large and growing collections of high quality lead structures for use in high throughput screening assays. Collections of small molecules with diverse structures and "drug-like" properties have, in the past, been acquired by several means: by archive of previous internal lead(More)
We designed and synthesized a novel series of phenylamino- and phenoxy-substituted pyrazolo[3,4-d]pyrimidine derivatives as GPR119 agonists. SAR studies indicated that electron-withdrawing substituents on the phenyl ring are important for potency and full efficacy. Compound 26 combined good potency with a promising pharmacokinetic profile in mice, and(More)
Asthma, chronic obstructive pulmonary disease (COPD) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are characterized by neutrophilic inflammation and elevated levels of leukotriene B4 (LTB4). However, the exact role of LTB4 pathways in mediating pulmonary neutrophilia and the potential therapeutic application of LTB4 receptor(More)