Learn More
BACKGROUND Detrusor-sphincter dyssynergia is a condition in which reflexive contractions of the external urethral sphincter occur during bladder contractions, preventing the expulsion of urine. High-frequency stimulation (kHz range) has been shown to elicit a fast-acting and reversible block of action potential propagation in peripheral nerves, which may be(More)
A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of(More)
OBJECTIVE Somatosensation is critical for effective object manipulation, but current upper limb prostheses do not provide such feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory(More)
The management of urinary tract dysfunction is crucial for the health and well-being of people with spinal cord injury. Devices, specifically catheters, play an important role in the daily regime of bladder management for most people with spinal cord injury. However, the high incidence of complications associated with the use of catheters, and the fact that(More)
Microstimulation within the motor regions of the spinal cord is often assumed to activate motoneurons and propriospinal neurons close to the electrode tip. However, previous work has shown that intraspinal microstimulation (ISMS) in the gray matter activates sensory afferent axons as well as alpha-motoneurons (MNs). Here we report on the recruitment of(More)
Our research group recently demonstrated that a person with tetraplegia could use a brain-computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able-bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments(More)
Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic(More)
OBJECTIVE Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. APPROACH We evaluated the use of natural sensory nerve signals obtained with penetrating(More)
CONTEXT Spinal cord injury (SCI) results in a loss of function and sensation below the level of the lesion. Neuroprosthetic technology has been developed to help restore motor and autonomic functions as well as to provide sensory feedback. FINDINGS This paper provides an overview of neuroprosthetic technology that aims to address the priorities for(More)
Intracortical microstimulation of the somatosensory cortex offers the potential for creating a sensory neuroprosthesis to restore tactile sensation. Whereas animal studies have suggested that both cutaneous and proprioceptive percepts can be evoked using this approach, the perceptual quality of the stimuli cannot be measured in these experiments. We show(More)