Robert A. Beckman

Learn More
PURPOSE Insulin-like growth factor-1 receptor (IGF-1R) mediates cellular processes in cancer and has been proposed as a therapeutic target. Dalotuzumab (MK-0646) is a humanized IgG1 monoclonal antibody that binds to IGF-1R preventing receptor activation. This study was designed to evaluate the safety and tolerability of dalotuzumab, determine the(More)
A demultiplexer is an electronic circuit designed to separate two or more combined signals. We report on a demultiplexer architecture for bridging from the submicrometer dimensions of lithographic patterning to the nanometer-scale dimensions that can be achieved through nanofabrication methods for the selective addressing of ultrahigh-density nanowire(More)
Epidemiologic data and molecular biology have combined to demonstrate that multiple genetic changes may be required in carcinogenesis. Mutator mutations, defined as genetic changes which increase the rate of genetic change, including both single base changes and chromosomal instability, may accelerate this process. Key questions remain in defining the role(More)
The future of drug development in oncology lies in identifying subsets of patients who will benefit from particular therapies, using predictive biomarkers. These technologies offer hope of enhancing the value of cancer medicines and reducing the size, cost and failure rates of clinical trials. However, examples of the failure of predictive biomarkers also(More)
PURPOSE A fully human monoclonal antibody to anti-alpha(v) integrins (CNTO 95) has been shown to inhibit angiogenesis and tumor growth in preclinical studies. We assessed the safety and pharmacokinetics of CNTO 95 in patients with advanced refractory solid tumors. EXPERIMENTAL DESIGN In this phase I trial, CNTO 95 (0.1, 0.3, 1.0, 3.0, and 10.0 mg/kg) was(More)
Carcinogenesis involves the acquisition of multiple genetic changes altering various cellular phenotypes. These changes occur within the fixed time period of a human lifespan, and mechanisms that accelerate this process are more likely to result in clinical cancers. Mutator mutations decrease genome stability and, hence, accelerate the accumulation of(More)
PURPOSE Aberrant Notch signaling has been implicated in the pathogenesis of many human cancers. MK-0752 is a potent, oral inhibitor of γ-secretase, an enzyme required for Notch pathway activation. Safety, maximum-tolerated dose, pharmacokinetics (PKs), pharmacodynamics, and preliminary antitumor efficacy were assessed in a phase I study of MK-0752. (More)
PURPOSE HER3 is a key dimerization partner for other HER family members, and its expression is associated with poor prognosis. This first-in-human study of U3-1287 (NCT00730470), a fully human anti-HER3 monoclonal antibody, evaluated its safety, tolerability, and pharmacokinetics in patients with advanced solid tumor. EXPERIMENTAL DESIGN The study was(More)
PURPOSE Multiple cancers harbor genetic aberrations that impact AKT signaling. MK-2206 is a potent pan-AKT inhibitor with a maximum tolerated dose (MTD) previously established at 60 mg on alternate days (QOD). Due to a long half-life (60-80 hours), a weekly (QW) MK-2206 schedule was pursued to compare intermittent QW and continuous QOD dosing. (More)