Rob van Harrevelt

Learn More
The potential energy surface for the first excited singlet state (S(1)) of methane is explored using multireference singles and doubles configuration interaction calculations, employing a valence triple zeta basis set. A larger valence quadruple zeta basis is used to calculate the vertical excitation energy and dissociation energies. All stationary points(More)
The ab initio water dimer interaction energies obtained from coupled cluster calculations and used in the CC-pol water pair potential (Bukowski et al., Science, 2007, 315, 1249) have been refitted to a site-site form containing eight symmetry-independent sites in each monomer and denoted as CC-pol-8s. Initially, the site-site functions were assumed in a(More)
The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem. Phys. 2008, 128, 034312) was used in accurate calculations of the vibration-rotation-tunneling (VRT) levels of (H2O)2 and (D2O)2 involving the intermolecular rovibrational and tunneling states as well as the intramolecular vibrations. For the(More)
An improved intermolecular potential surface for the benzene dimer is constructed from interaction energies computed by symmetry-adapted perturbation theory, SAPT(DFT), with the inclusion of third-order contributions. Twelve characteristic points on the surface have been investigated also using the coupled-cluster method with single, double, and(More)
Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum(More)
Photodissociation of HOD from the B state has been studied using the high resolution rydberg "tagging" time-of-flight (TOF) technique. The TOF spectra show an unusually strong population (approximately 50%) for a single rotational state for the OD (A(2)Sigma, upsilon = 0) fragments. Through theoretical studies, this phenomenon, which we have labeled the(More)
Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N2 on stepped Ru(0001) are presented. Converged six-dimensional quantum calculations for this heavy-atom reaction have been performed using the multiconfiguration time-dependent Hartree method. A potential-energy surface for the transition-state region is constructed from(More)
The room temperature absorption spectra of water and its isotopomers D2O and HOD have been determined in absolute cross section units in the 125 to 145 nm wavelength region using synchrotron radiation. The experimental results for these B band spectra are compared with results from quantum mechanical calculations using accurate diabatic ab initio(More)
The efficiency of the multiconfigurational time-dependent Hartree (MCTDH) method for calculating the initial-state selected dissociation probability of H(2)(v=0,j=0) on Cu(100) is investigated. The MCTDH method is shown to be significantly more efficient than standard wave packet methods. A large number of single-particle functions is required to converge(More)