Learn More
We fit a mathematical model to data characterizing the primary cellular immune response to lymphocytic choriomeningitis virus. The data enumerate the specific CD8(+) T cell response to six MHC class I-restricted epitopes and the specific CD4(+) T cell responses to two MHC class II-restricted epitopes. The peak of the response occurs around day 8 for CD8(+)(More)
The present paper investigates conditions under which immunological memory can be maintained by stimulatory idiotypic network interactions. The paper was motivated by the work of (De Boer & Hogeweg, 1989b, Bull. math. Biol. 51, 381-408.) which claimed that idiotypic memory is not possible because of percolation within the network. Here we reinvestigate the(More)
We develop various mathematical models of the clinical latency stage of HIV-1 infection assuming that HIV-1 infection is limited either by the availability of cells that HIV can infect or by a specific anti-HIV cellular immune response. The former models we call "target-cell-limited". Comparing the models by phase plane analysis we find that they all belong(More)
It is widely believed that the gut, and particularly the lamina propria (LP) of the gut, contains most of the lymphocytes in humans. The strong depletion of CD4(+) T cells from the gut LP of HIV-infected patients was, therefore, suggested to be such a large, irreversible insult that it could explain HIV disease progression. However, reviewing data from(More)
The development of the immune repertoire during neonatal life involves a strong selection process among different clones. The immune system is genetically capable of producing a much more diverse set of lymphocyte receptors than are expressed in the actual repertoire. By means of a model we investigate the hypothesis that repertoire selection is carried out(More)
A large-scale model of the immune network is analyzed, using the shape-space formalism. In this formalism, it is assumed that the immunoglobulin receptors on B cells can be characterized by their unique portions, or idiotypes, that have shapes that can be represented in a space of a small finite dimension. Two receptors are assumed to interact to the extent(More)
the beginning of the twenty-first century it has been possible to visualize the dynamic behaviour of immune cells in living lymphoid tissues using time-lapse video microscopy 1–6 , whereby fluorescently labelled cells are usually visualized by two-photon excitation. This has resulted in spectacular videos of the in vivo behaviour of, and interactions(More)
Treatment of human immunodeficiency virus type 1 (HIV-1) infection during the clinical latency phase with drugs inhibiting reverse transcriptase (RT) reduces the HIV-1 RNA load and increases the CD4+ T-cell count. Typically, however, the virus evolves mutations in the RT gene that circumvent the drugs. We develop a mathematical model for this situation. The(More)
The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with(More)
The division tracking dye, carboxyfluorescin diacetate succinimidyl ester (CFSE) is currently the most informative labeling technique for characterizing the division history of cells in the immune system. Gett and Hodgkin [Nat. Immunol. 1:239-244, 2000] have pioneered the quantitative analysis of CFSE data. We confirm and extend their data analysis approach(More)