Ritsert C. Jansen

Learn More
A very general method is described for multiple linear regression of a quantitative phenotype on genotype [putative quantitative trait loci (QTLs) and markers] in segregating generations obtained from line crosses. The method exploits two features, (a) the use of additional parental and F1 data, which fixes the joint QTL effects and the environmental error,(More)
The interval mapping method is widely used for the mapping of quantitative trait loci (QTLs) in segregating generations derived from crosses between inbred lines. The efficiency of detecting and the accuracy of mapping multiple QTLs by using genetic markers are much increased by employing multiple QTL models instead of the single QTL models (and no QTL(More)
Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103(More)
Accessions of a plant species can show considerable genetic differences that are analyzed effectively by using recombinant inbred line (RIL) populations. Here we describe the results of genome-wide expression variation analysis in an RIL population of Arabidopsis thaliana. For many genes, variation in expression could be explained by expression quantitative(More)
The recent successes of genome-wide expression profiling in biology tend to overlook the power of genetics. We here propose a merger of genomics and genetics into 'genetical genomics'. This involves expression profiling and marker-based fingerprinting of each individual of a segregating population, and exploits all the statistical tools used in the analysis(More)
Although the interval mapping method is widely used for mapping quantitative trait loci (QTLs), it is not very well suited for mapping multiple QTLs. Here, we present the results of a computer simulation to study the application of exact and approximate models for multiple QTLs. In particular, we focus on an automatic two-stage procedure in which in the(More)
Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has(More)
Large microarray datasets have enabled gene regulation to be studied through coexpression analysis. While numerous methods have been developed for identifying differentially expressed genes between two conditions, the field of differential coexpression analysis is still relatively new. More specifically, there is so far no sensitive and untargeted method to(More)
For many complex traits, genetic variants have been found associated. However, it is still mostly unclear through which downstream mechanism these variants cause these phenotypes. Knowledge of these intermediate steps is crucial to understand pathogenesis, while also providing leads for potential pharmacological intervention. Here we relied upon natural(More)
To study the role of matrix-associated regions (MARs) in establishing independent chromatin domains in plants, two transgenes were cloned between chicken lysozyme A elements. These transgenes were the neomycin phosphotransferase (NPTII) gene under control of the nopaline synthase (nos) promoter and the P-glucuronidase (GUS) gene controlled by the double(More)