Ritcha Mehra-Chaudhary

Learn More
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from the bacterium Pseudomonas aeruginosa is involved in the biosynthesis of several complex carbohydrates, including alginate, lipopolysaccharide, and rhamnolipid. Previous structural studies of this protein have shown that binding of substrates produces a rotation of the C-terminal domain,(More)
UNLABELLED Enzymes in the α-d-phosphohexomutase superfamily catalyze the conversion of 1-phosphosugars to their 6-phospho counterparts. Their phosphoryl transfer reaction has long been proposed to require general acid-base catalysts, but candidate residues for these key roles have not been identified. In this study, we show through mutagenesis and kinetic(More)
Phosphoglucosamine mutase (PNGM) is a bacterial enzyme that participates in the peptidoglycan biosynthetic pathway. Recent crystal structures of PNGM from two bacterial pathogens, Bacillus anthracis and Francisella tularensis, have revealed key structural features of this enzyme for the first time. Here, we follow up on several novel findings from the(More)
UDP-galactopyranose mutase (UGM) catalyzes the interconversion between UDP-galactopyranose and UDP-galactofuranose. Absent in humans, galactofuranose is found in bacterial and fungal cell walls and is a cell surface virulence factor in protozoan parasites. For these reasons, UGMs are targets for drug discovery. Here, we report a mutagenesis and structural(More)
The crystal structure of the enzyme phosphoglucomutase from Salmonella typhimurium (StPGM) is reported at 1.7 A resolution. This is the first high-resolution structural characterization of a bacterial protein from this large enzyme family, which has a central role in metabolism and is also important to bacterial virulence and infectivity. A comparison of(More)
Phosphomannomutase/phosphoglucomutase contributes to the infectivity of Pseudomonas aeruginosa, retains and reorients its intermediate by 180°, and rotates domain 4 to close the deep catalytic cleft. Nuclear magnetic resonance (NMR) spectra of the backbone of wild-type and S108C-inactivated enzymes were assigned to at least 90%. (13)C secondary chemical(More)
UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in pathogens by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. Here we report the first crystal structure of a covalent intermediate in the UGM reaction. The 2.3 Å resolution structure reveals UDP bound in the active site and galactopyranose(More)
The aim of this article is to analyze conformational changes by comparing 10 different structures of Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase (PMM/PGM), a four-domain enzyme in which both substrate binding and catalysis require substantial movement of the C-terminal domain. We focus on changes in interdomain and active site crevices(More)
The enzyme phosphoglucosamine mutase catalyzes the conversion of glucosamine 6-phosphate to glucosamine 1-phosphate, an early step in the formation of the nucleotide sugar UDP-N-acetylglucosamine, which is involved in peptidoglycan biosynthesis. These enzymes are part of the large alpha-D-phosphohexomutase enzyme superfamily, but no proteins from the(More)
Phosphoglucosamine mutase (PNGM) is an evolutionarily conserved bacterial enzyme that participates in the cytoplasmic steps of peptidoglycan biosynthesis. As peptidoglycan is essential for bacterial survival and is absent in humans, enzymes in this pathway have been the focus of intensive inhibitor design efforts. Many aspects of the structural biology of(More)