Ritam Sinha

Learn More
Pseudomonas putida is an uncommon opportunistic pathogen, usually susceptible to antimicrobial agents. Data concerning resistance to antimicrobial agents in clinical P. putida isolates are limited. To the best of our knowledge we report for the first time the isolation of NDM-1-producing multidrug-resistant P. putida from a case of acute gastroenteritis.(More)
Like most other Gram-negative bacteria, Shigella releases outer membrane vesicles (OMVs) into the surrounding environment during growth. In this study, we have exploited OMVs of Shigella as a protective immunogen in a mice model against Shigellosis. Distinctive vesicle secretion was noticed from different Shigella strains. Among them, Shigella boydii type 4(More)
Salmonella-induced gastroenteritis causes massive morbidity and mortality in both adults and children of developing countries. However, it is difficult to study the mode of infection and vaccine efficacy due to inadequacies of current animal models. For this reason, we have explored using zebrafish as an improved model for non-typhoidal Salmonella (NTS)(More)
Recently, we demonstrated oral immunizations with single serotype outer membrane vesicles of Vibrio cholerae induced serogroup specific protective immunity in the RITARD model. In our present study, we advanced our research by formulating multi-serotype outer membrane vesicles, mixing the OMVs of five virulent V. cholerae strains. Four doses of oral(More)
BACKGROUND Vibrio cholerae non-O1/ non-O139 serogroups have been reported to cause sporadic diarrhoea in humans. Cholera toxins have been mostly implicated for hypersecretion of ions and water into the small intestine. Though most of the V. cholerae non-O1/ non-O139 strains lack these cholera toxins, several other innate virulence factors contribute towards(More)
The severe diarrheal disease cholera is endemic in over 50 countries. Current therapies for cholera patients involve oral and/or intravenous rehydration, often combined with the use of antibiotics to shorten the duration and intensity of the disease. However, as antibiotic resistance increases, treatment options will become limited. Linoleic acid has been(More)
Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane(More)
Our previous studies on outer membrane vesicles based vaccine development against shigellosis, revealed the inability of Shigella to release significant amount of vesicles naturally, during growth. Disruption of tolA, one of the genes of the Tol-Pal system of Gram negative bacterial membrane, has increased the vesicle release rate of a Shigella boydii type(More)
Targeting bacterial virulence mechanisms without compromising bacterial growth is a promising strategy to prevent drug resistance. LysR-type transcriptional regulators (LTTRs) possess structural conservation across bacterial species and regulate virulence in numerous pathogens, making them attractive targets for antimicrobial agents. We targeted AphB, a(More)
Bacterial outer membrane vesicles have been extensively investigated and considered as a next generation vaccine. Recently, we have demonstrated that the cholera pentavalent outer membrane vesicles (CPMVs) immunogen induced adaptive immunity and had a strong protective efficacy against the circulating V. cholerae strains in a mouse model. In this present(More)