Rita Sleimen-Malkoun

Learn More
Though age-related decrease in information-processing capacities is hypothesized to be a prominent cause of behavioral slowing, it has been scarcely systematically studied in goal-directed motor tasks. The present study investigated how the decrease in information processing affects the sensorimotor processes underlying the control of a discrete Fitts’(More)
The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID) in a goal-directed rapid aiming task (Fitts' law) has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs(More)
Inspired by the framework of dynamical system theory, we aimed at exploring how the behavioural repertoire of the sensorimotor system can be reshaped with aging. Our reasoning was founded on the assumption that, with age, some of the existing patterns can be destabilized or even lost. In the present paper, this issue was investigated through the study of(More)
Growing evidence demonstrates that aging not only leads to structural and functional alterations of individual components of the neuro-musculo-skeletal system (NMSS) but also results in a systemic re-organization of interactions within and between the different levels and functional domains. Understanding the principles that drive the dynamics of these(More)
The present work focused on the study of fluctuations of cortical activity across time scales in young and older healthy adults. The main objective was to offer a comprehensive characterization of the changes of brain (cortical) signal variability during aging, and to make the link with known underlying structural, neurophysiological, and functional(More)
BACKGROUND Multiscale entropy (MSE) estimates the predictability of a signal over multiple temporal scales. It has been recently applied to study brain signal variability, notably during aging. The grounds of its application and interpretation remain unclear and subject to debate. METHOD We used both simulated and experimental data to provide an intuitive(More)
The present study aimed at characterizing the effects of increasing (relative) force level and aging on isometric force control. To achieve this objective and to infer changes in the underlying control mechanisms, measures of information transmission, as well as magnitude and time-frequency structure of behavioral variability were applied to(More)
INTRODUCTION We used a multidimensional approach to study isometric force control in single and dual-task conditions. METHODS Multiple measures of performance, efficiency, variability, and structural interference were calculated at low and higher force levels under single (force maintenance) and dual-task (force maintenance and reaction time) conditions.(More)
We investigated age-related differences in motor behavior under different task contexts of isometric force control. The tasks involved rapid force production and force maintenance, either separately or in combination. For the combined context, we used Fitts-like tasks, in which we scaled either the force level (D manipulation, i.e., manipulation of the(More)
The present study aimed to determine whether the general slowing hypothesis (GSH) could be extended to the motor domain by comparing cognitive and motor age-related slowing. To achieve this objective, we compared the slopes of Hick-Hyman's law and Fitts' law, in young and older adults. The general hypothesis was that, due to the dedifferentiation of(More)