Rita Mukhopadhyay

Learn More
Arsenic compounds have been abundant at near toxic levels in the environment since the origin of life. In response, microbes have evolved mechanisms for arsenic resistance and enzymes that oxidize As(III) to As(V) or reduce As(V) to As(III). Formation and degradation of organoarsenicals, for example methylarsenic compounds, occur. There is a global arsenic(More)
The Leishmania ATP-binding cassette (ABC) transporter PGPA is involved in metal resistance (arsenicals and antimony), although the exact mechanism by which PGPA confers resistance to antimony, the first line drug against Leishmania, is unknown. The results of co-transfection experiments, transport assays, and the use of inhibitors suggest that PGPA(More)
In Saccharomyces cerevisiae, expression of the ACR2 and ACR3 genes confers arsenical resistance. Acr2p is the first identified eukaryotic arsenate reductase. It reduces arsenate to arsenite, which is then extruded from cells by Acr3p. In this study, we demonstrate that ACR2 complemented the arsenate-sensitive phenotype of an arsC deletion in Escherichia(More)
Resistance to the oxyanion arsenite in the parasite Leishmania is multifactorial. We have described previously the frequent amplification of the ABC transporter gene pgpA, the presence of a non-PgpA thiol-metal efflux pump and increased levels of glutathione and trypanothione in resistant cells. Other loci are also amplified, although their role in(More)
The ubiquity of arsenic in the environment has led to the evolution of enzymes for arsenic detoxification. An initial step in arsenic metabolism is the enzymatic reduction of arsenate [As(V)] to arsenite [As(III)]. At least three families of arsenate reductase enzymes have arisen, apparently by convergent evolution. The properties of two of these are(More)
Leishmania resistant to arsenicals and antimonials extrude arsenite. Previous results of arsenite uptake into plasma membrane-enriched vesicles suggested that the transported species is a thiol adduct of arsenite. In this paper, we demonstrate that promastigotes of arsenite-resistant Leishmania tarentolae have increased levels of intracellular thiols.(More)
The mechanism of resistance to the metal arsenite has been studied and compared in L. mexicana, L. tropica, and L. tarentolae selected in a step by step manner for arsenite resistance. Amplification of the ABC transporter gene pgpA was found to be a frequent resistance mechanism in all species. Transfection of pgpA genes into different species indicated(More)
Antimonial-containing drugs are the first line of treatment against the parasite Leishmania. Resistance to antimonials has been correlated to its reduced accumulation. We used a dominant negative functional cloning strategy where a Leishmania mexicana expression cosmid bank was transfected in cells resistant to trivalent antimony (SbIII). Cells were(More)
Arsenicals and antimonials are first line drugs for the treatment of trypanosomal and leishmanial diseases. To create the active form of the drug, Sb(V) must be reduced to Sb(III). Because arsenic and antimony are related metalloids, and arsenical resistant Leishmania strains are frequently cross-resistant to antimonials, we considered the possibility that(More)
The levels of trypanothione, a glutathione-spermidine conjugate, are increased in the protozoan parasite Leishmania selected for resistance to the heavy metal arsenite. The levels of putrescine and spermidine were increased in resistant mutants. This increase is mediated by overexpression of ornithine decarboxylase (ODC), the rate-limiting enzyme in(More)