Learn More
A new insertion sequence (IS element), IS1411, was identified downstream of the phenol degradation genes pheBA that originated from plasmid DNA of Pseudomonas sp. strain EST1001. According to sequence analysis, IS1411 belongs to a new family of IS elements that has recently been named the ISL3 family (J. Mahillon and M. Chandler, Microbiol. Mol. Biol. Rev.(More)
A novel experimental system to study mutation in starving bacteria was designed, relying on the activation of a promoterless phenol degradation operon of Pseudomonas putida. The Phe+ (phenol-utilizing) mutants accumulated in the starving culture of P. putida in the presence of phenol but not in the absence of it. We ruled out the possibility that the(More)
In Pseudomonas putida PaW85, the ortho-cleavage pathway is used for catechol degradation. The 11.4-kb XhoI fragment cloned from phenol degradation plasmid pEST1226 into pKT240 (recombinant plasmid pAT1140) contains the inducible pheBA operon that encodes catechol 1,2-dioxygenase (gene pheB) and phenol monooxygenase (gene pheA), the first two enzymes for the(More)
Tn4652 is a derivative of the toluene degradation transposon Tn4651 that belongs to the Tn3 family of transposons (M. Tsuda and T. Iino, Mol. Gen. Genet. 210:270-276, 1987). We have sequenced the transposase gene tnpA of transposon Tn4652 and mapped its promoter to the right end of the element. The deduced amino acid sequence of tnpA revealed 96.2% identity(More)
We have previously shown that both ends of the Tn3 family transposon Tn4652 contain integration host factor (IHF) binding sites and that IHF positively regulates expression of the Tn4652 transposase gene tnpA in Pseudomonas putida (R. Hõrak, and M. Kivisaar, J. Bacteriol. 180:2822-2829, 1998). Tn4652 can activate silent genes by creating fusion promoters(More)
Plasmids in conjunction with other mobile elements such as transposons are major players in the genetic adaptation of bacteria in response to changes in environment. Here we show that a large catabolic TOL plasmid, pWW0, from Pseudomonas putida carries genes (rulAB genes) encoding an error-prone DNA polymerase Pol V homologue which increase the survival of(More)
Chromosomal toxin-antitoxin (TA) systems are widespread among free-living bacteria and are supposedly involved in stress tolerance. Here, we report the first TA system identified in the soil bacterium Pseudomonas putida. The system, encoded by the loci PP1586-PP1585, is conserved in pseudomonads and belongs to the HigBA family. The new TA pair was named(More)
We have recently found that Pseudomonas putida deficient in ColRS two-component system is sensitive to phenol and displays a serious defect on solid glucose medium where subpopulation of bacteria lyses. The latter phenotype is significantly enhanced by the presence of phenol in growth medium. Here, we focused on identification of factors affecting phenol(More)
The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth(More)
Bacteria use two-component signal transduction pathways to sense both extracellular and intracellular environment and to coordinate cellular events according to changing conditions. Adaptation can be either physiological or genetical. Here, we present evidence that a genome reorganization process such as transposition can be controlled by certain(More)