Rishikesh P. Bhalerao

Learn More
We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of(More)
Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor(More)
Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis(More)
Recent studies in the model plant Arabidopsis provide new insight into the regulation of root architecture, a key determinant of nutrient-and water-use efficiency in crops. Lateral root (LR) primordia originate from a subset of pericycle founder cells. Sophisticated mass-spectroscopy-based techniques have been used to map the sites of biosynthesis of auxin(More)
Arabidopsis root architecture is regulated by shoot-derived signals such as nitrate and auxin. We report that mutations in the putative auxin influx carrier AUX1 modify root architecture as a result of the disruption in hormone transport between indole-3-acetic acid (IAA) source and sink tissues. Gas chromatography-selected reaction monitoring-mass(More)
Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin(More)
Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis(More)
BACKGROUND We have developed genomic tools to allow the genus Populus (aspens and cottonwoods) to be exploited as a full-featured model for investigating fundamental aspects of tree biology. We have undertaken large-scale expressed sequence tag (EST) sequencing programs and created Populus microarrays with significant gene coverage. One of the important(More)
Indole acetic acid (auxin) is a key regulator of wood formation, and an observed overlap between auxin concentration gradient and developing secondary xylem cells has led to the hypothesis that auxin regulates wood formation by acting as a morphogen. We dissected the role of auxin in wood formation by identifying the auxin-responsive transcriptome in(More)
The secretion of proteins, lipids, and carbohydrates to the cell surface is essential for plant development and adaptation. Secreted substances synthesized at the endoplasmic reticulum pass through the Golgi apparatus and trans-Golgi network (TGN) en route to the plasma membrane via the conventional secretion pathway. The TGN is morphologically and(More)