Learn More
Misfolding of Cu/Zn-superoxide dismutase (SOD1) is emerging as a mechanism underlying motor neuron degeneration in individuals with amyotrophic lateral sclerosis (ALS) who carry a mutant SOD1 gene (SOD1 ALS). Here we describe a structure-guided approach to developing an antibody that specifically recognizes monomer-misfolded forms of SOD1. We raised this(More)
The presence of intracellular aggregates that contain Cu/Zn superoxide dismutase (SOD1) in spinal cord motor neurons is a pathological hallmark of amyotrophic lateral sclerosis (ALS). Although SOD1 is abundant in all cells, its half-life in motor neurons far exceeds that in any other cell type. On the basis of the premise that the long half-life of the(More)
There is increasing evidence that toxicity of mutant superoxide dismutase-1 (SOD1) in amyotrophic lateral sclerosis (ALS) is linked to its propensity to misfold and to aggregate. Immunotargeting of differently folded states of SOD1 has provided therapeutic benefit in mutant SOD1 transgenic mice. The specific region(s) of the SOD1 protein to which these(More)
The ability to regulate protein levels in live cells is crucial to understanding protein function. In the interest of advancing the tool set for protein perturbation, we developed a protein destabilizing domain (DD) that can confer its instability to a fused protein of interest. This destabilization and consequent degradation can be rescued in a reversible(More)
Posttranslational regulation of protein abundance in cells is a powerful tool for studying protein function. We here describe a novel genetically encoded protein domain that is degraded upon exposure to non-toxic blue light. We demonstrate that fusion proteins containing this domain are rapidly degraded in cultured cells and in zebrafish upon illumination.(More)
Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis(®) and diflunisal, inhibit TTR misfolding by stabilizing native tetrameric TTR; however, their minimal effective concentration is in the micromolar range. By immune-targeting(More)
Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROIs) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin-fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the(More)
  • 1