Learn More
The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment(More)
In previous studies we used the technique of dynamic clamp to study how temporal modulation of inhibitory and excitatory inputs control the frequency and precise timing of spikes in neurons of the deep cerebellar nuclei (DCN). Although this technique is now widely used, it is limited to interpreting conductance inputs as being location independent; i.e.,(More)
Small conductance Ca2+-activated potassium (SK) current provides an important modulator of excitatory synaptic transmission, which undergoes plastic regulation via multiple mechanisms. We examined whether inhibitory input processing is also dependent on SK current in the cerebellar nuclei (CN) where inhibition provides the only route of information transfer(More)
Lin RJ, Jaeger D. Using computer simulations to determine the limitations of dynamic clamp stimuli applied at the soma in mimicking distributed conductance sources. J Neurophysiol 105: 2610–2624, 2011. First published February 16, 2011; doi:10.1152/jn.00968.2010.—In previous studies we used the technique of dynamic clamp to study how temporal modulation of(More)
Dynamic clamping is an increasingly popular method to apply artificial conductances to neurons. Many studies use this method to apply in-vivo like synaptic input patterns to neurons recorded in brain slices. The major drawback of this method is that conductances can only be applied at a single location, usually the soma, and thus may not replicate the(More)
  • 1