Learn More
The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic(More)
The mammalian intestinal epithelium has a unique organization in which crypts harboring stem cells produce progenitors and finally clonal populations of differentiated cells. Remarkably, the epithelium is replaced every 3-5 d throughout adult life. Disrupted maintenance of the intricate balance of proliferation and differentiation leads to loss of(More)
Recent mapping of 5-hydroxymethylcytosine (5hmC) provides a genome-wide view of the distribution of this important chromatin mark. However, the role of 5hmC in specific regulatory regions is not clear, especially at enhancers. We found a group of distal transcription factor binding sites highly enriched for 5-hdroxymethylcytosine (5hmC), but lacking any(More)
Methylated cytosines are associated with gene silencing. The ten-eleven translocation (TET) hydroxylases, which oxidize methylated cytosines to 5-hydroxymethylcytosine (5hmC), are essential for cytosine demethylation. Gene silencing and activation are critical for intestinal stem cell (ISC) maintenance and differentiation, but the potential role of TET(More)
  • 1