Rimvydas Miliauskas

  • Citations Per Year
Learn More
In the present paper, referring to known characteristics of the outer hair cells functioning in the cochlea of the inner ear, a functional model of the outer hair cells is constructed. It consists of a linear feed-forward circuit and a non-linear positive feedback circuit. The feed-forward circuit reflects the contribution of local basilar and tectorial(More)
The outer hair cells (OHC) of the mammalian inner ear change the sensitivity and frequency selectivity of the filtering system of the cochlea using two kinds of mechanical activity: the somatic motility and the active hair bundle motion. We designed a non-linear adaptive model of the OHC employing both mechanisms of the mechanical activity. The modeling(More)
In the cochlea of the inner ear, outer hair cells (OHC) together with the local passive structures of the tectorial and basilar membranes comprise non-linear resonance circuits with the local and central (afferent-efferent) feedback. The characteristics of these circuits and their control possibilities depend on the mechanomotility of the OHC. The main(More)
We designed a non-linear functional model of the outer hair cell (OHC) functioning in the filtering system of the cochlea and then isolated from it two second-order structures, one employing the mechanism of the somatic motility and the other the hair bundle motion of the OHC. The investigation of these circuits showed that the main mechanism increasing the(More)
An adaptive nonlinear signal-filtering model of the cochlea is proposed based on the functional properties of the inner ear. The model consists of the cochlear filtering segments taking into account the longitudinal, transverse and radial pressure wave propagation. On the basis of an analytical description of different parts of the model and the results of(More)
We consider that the outer hair cells of the inner ear together with the local structures of the basilar membrane, reticular lamina and tectorial membrane form the primary filters (PF) of the second order. Taking into account a delay in transmission of the excitation signal in the cochlea and the influence of the Reissner membrane, we design a signal(More)
Outer hair cells in the cochlea of the ear, together with the local structures of the basilar membrane, reticular lamina and tectorial membrane constitute the adaptive primary filters (PF) of the second order. We used them for designing a serial-parallel signal filtering system. We determined a rational number of the PF included in Gaussian channels of the(More)