Rimantas Pupeikis

Learn More
The aim of the given paper is the development of an approach for parametric identification of Wiener systems with piecewise linear nonlinearities, i.e., when the linear part with unknown parameters is followed by a saturation-like function with unknown slopes. It is shown here that by a simple data reordering and by a following data partition the problem of(More)
a direct approach for estimating the parameters of a discrete-time linear time-invariant (LTI) dynamic system, acting in a closed-loop in the case of additive noise with contaminating outliers uniformly spread in it, is presented. It is assumed there that the parameters of the LQG (Linear Quadratic Gaussian) controller are unknown, as well as known(More)
The aim of the given paper is the development of an approach for parametric identification of Hammerstein systems with piecewise linear nonlinearities, i.e., when the saturation-like function with unknown slopes is followed by a linear part with unknown parameters. It is shown here that by a simple input data rearrangement and by a following data partition(More)
the problem of recursive estimation of linear dynamic systems parameters and of the state of such systems in the presence of outliers in observations have been considered. In this connection various ordinary recursive techniques are worked out, when systems output is corrupted by an additive noise with a time homogeneous contamination of outliers. The aim(More)
The aim of the given paper is a development of the direct approach used for the estimation of parameters of a closed-loop discrete-time dynamic system in the case of additive noise with outliers contaminated uniformly in it (Fig. 1). To calculate M-estimates of unknown parameters of such a system by means of processing input and noisy output observations(More)
In the previous paper (Pupeikis, 2000) the problem of closed-loop robust identification using the direct approach in the presence of outliers in observations have been considered. The aim of the given paper is a development of the indirect approach used for the estimation of parameters of a closed-loop discrete-time dynamic system in the case of additive(More)
The problem of recursive estimation of a state of dynamic systems in the presence of time-varying outliers in observations to be processed has been considered. A learning phase used in the state estimation is investigated, assuming that the observations of a noisy output signal and that of a training one are given. A technique based on robust filtering by(More)
In the previous paper (Pupeikis, 1998), the problem of recursive estimation of the state of linear dynamic systems, described by an autoregressive model (AR), in the presence of time-varying outliers in observations to be processed has been considered. An approach to the robust recursive state estimation has been obtained and proved by estimating the real(More)