Rima S. Al-awar

  • Citations Per Year
Learn More
Cryptophycins-1 and 52 (epoxides) were discovered to have in-vitro and in-vivo antitumor activity in the early 1990s. The chlorohydrins of these, Cryptophycins-8 and 55 (also discovered in the early 1990s) were markedly more active, but could not be formulated as stable solutions. With no method to adequately stabilize the chlorohydrins at the time,(More)
Introduction/Purpose: Cryptophycins are a family of antitubulin antitumor agents. A synthetic cryptophycin derivative (LY355703, CRYPTO 52) is in early clinical evaluation. The effect of infusion time on the antitumor activity of four cryptophycins was assessed in rats bearing the 13762 mammary carcinoma and combination treatment regimens were assessed in(More)
The asymmetric synthesis of all four of the known natural phlegmarines and one synthetic derivative has been accomplished in 19-22 steps from 4-methoxy-3-(triisopropylsilyl)pyridine. Chiral N-acylpyridinium salt chemistry was used twice to set the stereocenters at the C-9 and C-2' positions of the phlegmarine skeleton. Key reactions include the use of a(More)
Cryptophycin 52 is a synthetic derivative of Cryptophycin 1, a potent antimicrotubule agent isolated from cyanobacteria. In an effort to increase the potency and water solubility of the molecule, a structure-activity relationship study (SAR) was initiated around the phenyl ring of fragment A. These Cryptophycin 52 analogues were accessed using a Wittig(More)
The synthesis of a novel series of 1,7-annulated indolocarbazoles 2 and 16 is described. These compounds were found to be potent cyclin dependent kinase inhibitors with good antiproliferative activity against two human carcinoma cell lines. These inhibitors also arrested tumor cells at the G1 phase and inhibited pRb phosphorylation.
Cryptophycin 52 (LY355703) is a potent antiproliferative analogue of the marine natural product cryptophycin 1. It has been shown to have a broad range of antitumor activity against human tumor xenografts and murine tumors including tumors resistant to Taxol and Adriamycin. Its mechanism of action involves arresting cells in the G2-M phase of the cell cycle(More)
Synthesis of indolo[6,7-a]pyrrolo[3,4-c]carbazoles 1, a new class of cyclin D1/CDK4 inhibitors, by oxidation of the corresponding aryl indolylmaleimides 2, will be described. Two approaches to the synthesis of 2 were identified that required new methods for the synthesis of 7-substituted indole acetamides 3 and N-methyl (indol-7-yl)oxoacetates 6. The(More)
The synthesis of novel aza-1,7-annulated indoles was achieved and these were converted to indolocarbazoles that proved to be potent kinase inhibitors. These compounds were also evaluated in a human colon carcinoma cell line and proved to be good antiproliferative agents.
[formula: see text] The first chiral auxiliary mediated asymmetric synthesis of the naturally occurring Lycopodium alkaloid (+)-luciduline has been accomplished. Key steps include an IMDA reaction of a chiral dihydropyridine, a subsequent retro-Mannich ring opening, and a novel cationic reductive cyclization reaction.
  • 1