Rima R. Rozen

Learn More
Hyperhomocysteinaemia has been identified as a risk factor for cerebrovascular, peripheral vascular and coronary heart disease1–4. Elevated levels of plasma homocysteine can result from genetic or nutrient-related disturbances in the trans-sulphuration or re-methylation pathways for homocysteine metabolism1,5–7. 5,10-Methylenetetrahydrofolate reductase(More)
A common mutation in methylenetetrahydrofolate reductase (MTHFR), C677T, results in a thermolabile variant with reduced activity. Homozygous mutant individuals (approximately 10% of North Americans) are predisposed to mild hyperhomocysteinemia, when their folate status is low. This genetic-nutrient interactive effect is believed to increase the risk for(More)
Hyperhomocysteinemia, a risk factor for cardiovascular disease, is caused by nutritional and/or genetic disruptions in homocysteine metabolism. The most common genetic cause of hyperhomocysteinemia is the 677C-->T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. This variant, with mild enzymatic deficiency, is associated with an increased(More)
Impairment of folate and cobalamin (vitamin B(12)) metabolism has been observed in families with neural tube defects (NTDs). Genetic variants of enzymes in the homocysteine remethylation pathway might act as predisposing factors contributing to NTD risk. The first polymorphism linked to increased NTD risk was the 677C-->T mutation in(More)
BACKGROUND Methylenetetrahydrofolate reductase (MTHFR) synthesizes 5-methyltetrahydrofolate, the major carbon donor in remethylation of homocysteine to methionine. A common MTHFR mutation, an alanine-to-valine substitution, renders the enzyme thermolabile and may cause elevated plasma levels of the amino acid homocysteine. METHODS AND RESULTS To assess(More)
Folate derivatives are important in experimental colorectal carcinogenesis; low folate intake, particularly with substantial alcohol intake, is associated with increased risk. The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate, required for purine and thymidine syntheses, to(More)
Folic acid administration to women in the periconceptional period reduces the occurrence of neural tube defects (NTDs) in their offspring. A polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR), 677C-->T, is the first genetic risk factor for NTDs in man identified at the molecular level. The gene encoding another folate-dependent(More)
Elevated plasma homocysteine levels are associated with increased risk for cardiovascular disease and neural tube defects in humans. Folate treatment decreases homocysteine levels and dramatically reduces the incidence of neural tube defects. The flavoprotein methylenetetrahydrofolate reductase (MTHFR) is a likely target for these actions of folate. The(More)
Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine beta-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed(More)
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of methylenetetrahydrofolate to methyltetrahydrofolate, the major methyl donor for the conversion of homocysteine to methionine. Two common polymorphisms of the human enzyme have been identified: 677C>T, which leads to the substitution of Ala-222 by valine, and 1298A>C, which leads to the(More)