Learn More
ConoServer (http://www.conoserver.org) is a database specializing in the sequences and structures of conopeptides, which are toxins expressed by marine cone snails. Cone snails are carnivorous gastropods, which hunt their prey using a cocktail of toxins that potently subvert nervous system function. The ability of these toxins to specifically target(More)
α-Conotoxins potently and specifically inhibit isoforms of nicotinic acetylcholine receptors (nAChRs) and are used as molecular probes and as drugs or drug leads. Interactions occurring during binding and unbinding events are linked to binding kinetics, and knowledge of these interactions could help in the development of α-conotoxins as drugs. Here, the(More)
Nicotinic acetylcholine receptors (nAChRs) are drug targets for neuronal disorders and diseases. Partial agonists for nAChRs are currently being developed as drugs for the treatment of neurological diseases for their relative safety originated from reduced excessive stimulation. In the current study, molecular docking, molecular dynamics simulations and(More)
α-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to(More)
The human glycine receptor (hGlyR) is an anion-permeable ligand-gated channel that is part of a larger superfamily of receptors called the Cys-loop family. hGlyRs are particularly amenable to single-channel recordings, thus making them a model experimental system for understanding the Cys-loop receptor family in general. Understanding the relationship(More)
Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains.(More)
α-Conotoxin Vc1.1 specifically and potently inhibits the nicotinic acetylcholine receptor subtype α9α10 (α9α10 nAChR) and is a potential novel treatment for neuropathic pain. Here, we used a combination of computational modeling and electrophysiology experiments to determine the Vc1.1 binding site on the α9α10 nAChR. Interactions of Vc1.1 with two probable(More)
Cyclic α-conotoxin Vc1.1 (cVc1.1) is an orally active peptide with analgesic activity in rat models of neuropathic pain. It has two disulfide bonds, which can have three different connectivities, one of which is the native and active form. In this study we used computational modeling and nuclear magnetic resonance to design a disulfide-deleted mutant of(More)
A series of 2-pyridinyl-3-substituted-4(3H)-quinazolinones were synthesized, and their anti-influenza A virus activities were determined using the cytopathic effect inhibition assay. Most of the compounds were potent with IC50 values ranging from 51.6 to 93.0 μm, which are better than that of the currently marketed drug ribavirin. The molecular mechanisms(More)
Novel DNA cyclo-intercalators, which incorporated two intercalator subunits linked by two bridges, were synthesized. Binding of the compounds to calf-thymus DNA was studied by fluorescence spectroscopy, and docking simulations were used to predict the binding modes of these cyclic compounds. The spectral data demonstrated that all of these compounds can(More)