Learn More
Adenylate cyclase-deficient (cya) mutants of Escherichia coli K-12 were selectively and highly resistant to mecillinam (FL1060) among several beta-lactam antibiotics in the absence of cyclic adenosine 3',5'-monophosphate (cAMP). They became sensitive to the drug in the presence of cAMP. Also, cAMP receptor protein-negative (crp) mutants, with the exception(More)
Owing to the absence of the pentose phosphate pathway, the degradation pathway for the ribose moieties of nucleosides is unknown in Archaea. Here, in the archaeon Thermococcus kodakarensis, we identified a metabolic network that links the pentose moieties of nucleosides or nucleotides to central carbon metabolism. The network consists of three nucleoside(More)
Ribose-1,5-bisphosphate isomerase (R15Pi) is a novel enzyme recently identified as a member of an AMP metabolic pathway in archaea. The enzyme converts d-ribose 1,5-bisphosphate into ribulose 1,5-bisphosphate, providing the substrate for archaeal ribulose-1,5-bisphosphate carboxylase/oxygenases. We here report the crystal structures of R15Pi from(More)
AMP phosphorylase (AMPpase), ribose-1,5-bisphosphate (R15P) isomerase, and type III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to constitute a novel pathway involved in AMP metabolism in the Archaea. Here we performed a biochemical examination of AMPpase and R15P isomerase from Thermococcus kodakarensis. R15P isomerase was(More)
AMP phosphorylase (AMPpase) catalyzes the initial reaction in a novel AMP metabolic pathway recently found in archaea, converting AMP and phosphate into adenine and ribose 1,5-bisphosphate. Gel-filtration chromatography revealed that AMPpase from Thermococcus kodakarensis (Tk-AMPpase) forms an exceptionally large macromolecular structure (>40-mers) in(More)
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a central role in carbon dioxide fixation on our planet. Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) shows approximately twenty times the activity of spinach Rubisco at high temperature, but only one-eighth the activity at ambient temperature. We have tried(More)
1 AMP phosphorylase (AMPpase), ribose-1,5-bisphosphate (R15P) isomerase, and type 2 III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to 3 constitute a novel pathway involved in AMP metabolism in the Archaea. Here we performed 4 a biochemical examination of AMPpase and R15P isomerase from Thermococcus 5 kodakarensis. R15P(More)
  • 1