Rikard Johansson

Learn More
Model rejections lie at the heart of systems biology, since they provide conclusive statements: that the corresponding mechanistic assumptions do not serve as valid explanations for the experimental data. Rejections are usually done using e.g. the chi-square test (χ 2) or the Durbin-Watson test (DW). Analytical formulas for the corresponding distributions(More)
As our ability to measure the complexity of intracellular networks has evolved, it has become increasingly clear that we need new methods for data analysis: methods involving mathematical modeling. Nevertheless, it is still uncontroversial to publish and interpret experimental results without a model-based proof that the reasoning is correct. In the present(More)
  • 1