Rika Kuriwaka-Kido

Learn More
Molecular mechanism of mechanical stress-induced bone formation remains unclear. We demonstrate that mechanical unloading suppresses and reloading enhances Interleukin (IL)-11 gene expression in the hindlimb of mice in vivo. Mechanical stress to osteoblasts by fluid shear stress (FSS) in vitro rapidly and transiently enhances fosB gene transcription,(More)
Mechanical stress and parathyroid hormone (PTH) are major stimulators, and aging and glucocorticoids excess are important suppressors of osteoblast differentiation. Mechanical stress and PTH stimulate interleukin (IL)-11 expression in cells of osteoblast lineage by enhancing transcription of IL-11 gene via an increase in intracellular Ca²⁺. The elevated(More)
BACKGROUND Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the(More)
Glucocorticoid (GC) excess causes a rapid loss of bone with a reduction in bone formation. Intermittent PTH (1-34) administration stimulates bone formation and counteracts the inhibition of bone formation by GC excess. We have previously demonstrated that mechanical strain enhances interleukin (IL)-11 gene transcription by a rapid induction of ΔFosB(More)
Evaluation of atherosclerotic plaques depends on invasive intravascular ultrasonography (IVUS). Carboxy-terminal telopeptide of type I collagen (ICTP) is produced by matrix metalloproteinase (MMP)-dependent digestion of type I collagen. Because vulnerable plaques are rich in type I collagen and MMPs from macrophages, we examined the association between(More)
  • 1