Learn More
This study is aimed at the analysis of articular contact in a three-dimensional mathematical model of the human knee-joint. In particular the effect of articular contact on the passive motion characteristics is assessed in relation to experimentally obtained joint kinematics. Two basically different mathematical contact descriptions were compared for this(More)
The subject of this article is the development and application of computer-simulation methods to predict stress-related adaptive bone remodeling, in accordance with 'Wolff's Law'. These models are based on the Finite Element Method (FEM) in combination with numerical formulations of adaptive bone-remodeling theories. In the adaptive remodeling models(More)
The architecture of trabecular bone, the porous bone found in the spine and at articulating joints, provides the requirements for optimal load transfer, by pairing suitable strength and stiffness to minimal weight according to rules of mathematical design. But, as it is unlikely that the architecture is fully pre-programmed in the genes, how are the bone(More)
The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to simulate the remodeling process in each element(More)
If musculoskeletal tissues are indeed efficient for their mechanical function, it is most reasonable to assume that this is achieved because the mechanical environment in the tissue influences cell differentiation and expression. Although mechanical stimuli can influence the transport of bioactive factors, cell deformation and cytoskeletal strain, the(More)
Earlier experimental and finite element studies notwithstanding, the load transfer and stress distribution in the pelvic bone and the acetabulum in normal conditions are not well understood. This hampers the development of orthopaedic reconstruction methods. The present study deals with more precise finite element analyses of the pelvic bone, which are used(More)
Recent work on joint kinematics indicates that the finite centroid (centre of rotation) and the finite helical axis (axis of rotation, screw axis, twist axis) are highly susceptible to measurement errors when they are experimentally determined from landmark position data. This paper presents an analytical model to describe these effects, under isotropic(More)
Osteoarthritis (OA) is a multifactorial disease, resulting in diarthrodial joint wear and eventually destruction. Swelling of cartilage, which is proportional to the amount of collagen damage, is an initial event of cartilage degeneration, so damage to the collagen fibril network is likely to be one of the earliest signs of OA cartilage degeneration. We(More)
Most long-bone fractures heal through indirect or secondary fracture healing, a complex process in which endochondral ossification is an essential part and bone is regenerated by tissue differentiation. This process is sensitive to the mechanical environment, and several authors have proposed mechano-regulation algorithms to describe it using strain, pore(More)
Although the capacity of bone to adapt to functional mechanical requirements has been known for more than a century, it is still unclear how the bone adaptation processes are regulated. We hypothesize that osteocytes are sensitive to mechanical loading and control the regulation of bone mass in their environment. Recently, simulation models of such a(More)