Riikka J. Immonen

Learn More
We tested a hypothesis that manganese enhanced magnetic resonance imaging (MEMRI) after systemic injection of MnCl(2) could detect axonal sprouting in the hippocampus following kainate (KA) induced status epilepticus (SE). MEMRI was performed at 3 h, 25 h, 4 days, and 2 months post-SE. To assess the contribution of various cellular alterations that occur in(More)
A large number of animal models of traumatic brain injury (TBI) are already available for studies on mechanisms and experimental treatments of TBI. Immediate and early seizures have been described in many of these models with focal or mixed type (both gray and white matter damage) injury. Recent long-term video-electroencephalography (EEG) monitoring(More)
To understand the dynamics of progressive brain damage after lateral fluid-percussion induced traumatic brain injury (TBI) in rat, which is the most widely used animal model of closed head TBI in humans, MRI follow-up of 11 months was performed. The evolution of tissue damage was quantified using MRI contrast parameters T(2), T(1rho), diffusion (D(av)), and(More)
The need to use animal models to develop imaging markers that could be linked to electrophysiological abnormalities in epilepsy and able to predict epileptogenicity in human studies is widely acknowledged. This study aimed to investigate the value of early magnetic resonance imaging (MRI) in predicting the long-term increased seizure susceptibility in the(More)
OBJECTIVE We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes. RESEARCH DESIGN AND METHODS Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected(More)
In a subgroup of patients, traumatic brain injury (TBI) results in the occurrence of acute epileptic seizures or even status epilepticus, which are treated with antiepileptic drugs (AEDs). Recent experimental data, however, suggest that administration of AEDs at the early post-injury phase can compromise the recovery process. The present study was designed(More)
Post-traumatic epilepsy (PTE) accounts for 10-20% of symptomatic epilepsies. The urgency to understand the process of post-traumatic epileptogenesis and search for antiepileptogenic treatments is emphasized by a recent increase in traumatic brain injury (TBI) related to military combat or accidents in the aging population. Recent developments in modeling of(More)
Traumatic brain injury (TBI) can cause a myriad of sequelae depending on its type, severity, and location of injured structures. These can include mood disorders, posttraumatic stress disorder and other anxiety disorders, personality disorders, aggressive disorders, cognitive changes, chronic pain, sleep problems, motor or sensory impairments, endocrine(More)
In traumatic brain injury (TBI) the initial impact causes both immediate damage and also launches a cascade of slowly progressive secondary damage. The chronic outcome disabilities vary greatly and can occur several years later. The aim of this study was to find predictive factors for the long-term outcome using multiparametric, non-invasive magnetic(More)
The present study tested a hypothesis that early identification of injury severity with quantitative magnetic resonance imaging (MRI) provides biomarkers for predicting increased seizure susceptibility and epileptogenesis after traumatic brain injury (TBI). TBI was induced by lateral fluid percussion injury (FPI) in adult rats. Quantitative T2, T1ρ, and(More)