Learn More
Associations between markers and complex quantitative traits were investigated in a collection of 146 modern two-row spring barley cultivars, representing the current commercial germ plasm in Europe. Using 236 AFLP markers, associations between markers were found for markers as far apart as 10 cM. Subsequently, for the 146 cultivars the complex traits mean(More)
A consensus map of barley was constructed based on three reference doubled haploid (DH) populations and three recombinant inbred line (RIL) populations. Several sets of microsatellites were used as bridge markers in the integration of those populations previously genotyped with RFLP or with AFLP markers. Another set of 61 genic microsatellites was mapped(More)
A microsatellite or simple sequence repeat (SSR) consensus map of barley was constructed by joining six independent genetic maps based on the mapping populations 'Igri x Franka', 'Steptoe x Morex', 'OWB(Rec) x OWB(Dom)', 'Lina x Canada Park', 'L94 x Vada' and 'SusPtrit x Vada'. Segregation data for microsatellite markers from different research groups(More)
Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley-Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes involved in nonhost resistance. We developed two mapping(More)
The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of fungal haustoria. It is not known which of these candidate(More)
Partial resistance to leaf rust (Puccinia hordei G. H. Otth) in barley is a quantitative resistance that is not based on hypersensitivity. This resistance hampers haustorium formation, resulting in a long latency period in greenhouse tests. The three most consistent quantitative trait loci (QTL) uncovered in the L94 x 'Vada' mapping population were(More)
We developed an evolutionary relevant model system, barley-Puccinia [corrected] rust fungi, to study the inheritance and specificity of plant factors that determine to what extent innate nonhost immunity can be suppressed. A mapping population was developed from a cross between an experimental barley line (SusPtrit) [corrected] with exceptional(More)
Nonhost resistance is the most common type of resistance in plants. Understanding the factors that make plants susceptible or resistant may help to achieve durably effective resistance in crop plants. Screening of 109 barley (Hordeum vulgare L.) accessions in the seedling stage indicated that barley is a complete nonhost to most of the heterologous rust(More)
BACKGROUND Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait(More)
Nonhost resistance to plant pathogens can be constitutive or induced by microbes. Successful pathogens suppress microbe-induced plant defences by delivering appropriate effectors, which are apparently not sufficiently effective on nonhost plant species, as can be concluded from the strong host specificity of many biotroph plant pathogens. Such effectors act(More)