Learn More
To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of(More)
Handrim wheelchair propulsion is a cyclic skill that needs to be learned during rehabilitation. Yet it is unclear how inter-individual differences in motor learning impact wheelchair propulsion practice. Therefore we studied how early-identified motor learning styles in novice able-bodied participants impact the outcome of a low-intensity(More)
Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the(More)
To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the(More)
BACKGROUND It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency(More)
Handrim wheelchair propulsion is a cyclic skill that needs to be learned during rehabilitation. It has been suggested that more variability in propulsion technique benefits the motor learning process of wheelchair propulsion. The purpose of this study was to determine the influence of variable practice on the motor learning outcomes of wheelchair propulsion(More)
Changes in propulsion technique due to motor learning might account for a higher mechanical efficiency (ME, the ratio of internal power over external power). The changes in ME and propulsion technique were studied in a learning experiment, three times a week for eight minutes, with nine able-bodied subjects, simulating early rehabilitation. Instrumented(More)
  • 1