Learn More
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a component of the ubiquitin system, which has a fundamental role in regulating various biological activities. However, the functional role of the ubiquitin system in neurogenesis is not known. Here we show that UCH-L1 regulates the morphology of neural progenitor cells (NPCs) and mediates neurogenesis. UCH-L1(More)
Mammalian neuronal cells abundantly express a deubiquitylating enzyme, ubiquitin carboxy-terminal hydrolase 1 (UCH L1). Mutations in UCH L1 are linked to Parkinson's disease as well as gracile axonal dystrophy (gad) in mice. In contrast to the UCH L3 isozyme that is universally expressed in all tissues, UCH L1 is expressed exclusively in neurons and(More)
Parkinson's disease (PD) and Alzheimer's disease (AD), the most common neurodegenerative diseases, are caused by both genetic and environmental factors. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is involved in the pathogenesis of both of these neurodegenerative diseases. Several functions of UCH-L1, other than as an(More)
The rare inherited form of Parkinson's disease (PD), PARK5, is caused by a missense mutation in ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) gene, resulting in Ile93Met substitution in its gene product (UCH-L1(Ile93Met)). PARK5 is inherited in an autosomal-dominant mode, but whether the Ile93Met mutation gives rise to a gain-of-toxic-function or(More)
The I93M mutation in ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) was reported in one German family with autosomal dominant Parkinson's disease (PD). The causative role of the mutation has, however, been questioned. We generated transgenic (Tg) mice carrying human UCHL1 under control of the PDGF-B promoter; two independent lines were generated with the(More)
The synuclein family includes three isoforms, termed alpha, beta and gamma. alpha-Synuclein accumulates in various pathological lesions resulting from neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy. However, neither beta- nor gamma-synuclein has been detected in Lewy bodies, and(More)
Loss-of-function mutations of the parkin gene causes an autosomal recessive juvenile-onset form of Parkinson's disease (AR-JP). Parkin was shown to function as a RING-type E3 ubiquitin protein ligase. However, the function of parkin in neuronal cells remains elusive. Here, we show that expression of parkin-potentiated adenosine triphosphate (ATP)-induced(More)
Mammalian neuronal cells abundantly express a de-ubiquitinating isozyme, ubiquitin carboxy-terminal hydrolase L1 (UCH L1). Loss of UCH L1 function causes dying-back type of axonal degeneration. However, the function of UCH L1 in neuronal cells remains elusive. Here we show that overexpression of UCH L1 potentiated ATP-induced currents due to the activation(More)
Ubiquitin C-terminal hydrolase (UCH)-L3 is an enzyme with a strongly suggested de-ubiquitinating function by in vitro studies, but has poorly been investigated in vivo. In this study, we show that skeletal muscles of Uchl3(-/-) mice exhibit the up-regulation of cleaved ATF6, Grp78, and PDI as well as HSP27, HSP70, HSP90 and HSP110, which indicate the(More)
Functional magnetic resonance imaging (fMRI) studies have revealed that activity in the medial temporal lobe (MTL) predicts subsequent memory performance in humans. Because of limited knowledge on cytoarchitecture and axonal projections of the human MTL, precise localization and characterization of the areas that can predict subsequent memory performance(More)