Learn More
Mammalian neuronal cells abundantly express a deubiquitylating enzyme, ubiquitin carboxy-terminal hydrolase 1 (UCH L1). Mutations in UCH L1 are linked to Parkinson's disease as well as gracile axonal dystrophy (gad) in mice. In contrast to the UCH L3 isozyme that is universally expressed in all tissues, UCH L1 is expressed exclusively in neurons and(More)
Parkinson's disease (PD) and Alzheimer's disease (AD), the most common neurodegenerative diseases, are caused by both genetic and environmental factors. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is involved in the pathogenesis of both of these neurodegenerative diseases. Several functions of UCH-L1, other than as an(More)
The rare inherited form of Parkinson's disease (PD), PARK5, is caused by a missense mutation in ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) gene, resulting in Ile93Met substitution in its gene product (UCH-L1(Ile93Met)). PARK5 is inherited in an autosomal-dominant mode, but whether the Ile93Met mutation gives rise to a gain-of-toxic-function or(More)
Ubiquitin carboxyl-terminal hydrolase 1 (UCH-L1) can be detected in mouse testicular germ cells, mainly spermatogonia and somatic Sertoli cells, but its physiological role is unknown. We show that transgenic (Tg) mice overexpressing EF1alpha promoter-driven UCH-L1 in the testis are sterile due to a block during spermatogenesis at an early stage (pachytene)(More)
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a component of the ubiquitin system, which has a fundamental role in regulating various biological activities. However, the functional role of the ubiquitin system in neurogenesis is not known. Here we show that UCH-L1 regulates the morphology of neural progenitor cells (NPCs) and mediates neurogenesis. UCH-L1(More)
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. The I93M mutation in ubiquitin C-terminal hydrolase L1 (UCH-L1) is associated with familial PD, and we have previously shown that the I93M UCH-L1-transgenic mice exhibit dopaminergic cell loss. Over 90% of neurodegenerative diseases, including PD, occur(More)
Ubiquitin is thought to be a stress protein that plays an important role in protecting cells under stress conditions; however, its precise role is unclear. Ubiquitin expression level is controlled by the balance of ubiquitinating and deubiquitinating enzymes. To investigate the function of deubiquitinating enzymes on ischemia-induced neural cell apoptosis(More)
The I93M mutation in ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) was reported in one German family with autosomal dominant Parkinson's disease (PD). The causative role of the mutation has, however, been questioned. We generated transgenic (Tg) mice carrying human UCHL1 under control of the PDGF-B promoter; two independent lines were generated with the(More)
UCH-L3 belongs to the ubiquitin C-terminal hydrolase family that deubiquitinates ubiquitin-protein conjugates in the ubiquitin-proteasome system. A murine Uchl3 deletion mutant displays retinal degeneration, muscular degeneration, and mild growth retardation. To elucidate the function of UCH-L3, we investigated histopathological changes and expression of(More)
The synuclein family includes three isoforms, termed alpha, beta and gamma. alpha-Synuclein accumulates in various pathological lesions resulting from neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy. However, neither beta- nor gamma-synuclein has been detected in Lewy bodies, and(More)