Learn More
The past couple of years have seen several novel X-ray structures of 7 transmembrane (7TM) receptors in complex with antagonists and even with a peptide fragment of a G protein. These structures demonstrate that the main ligand-binding pocket in 7TM receptors is like a funnel with a partial 'lid' in which extracellular loop 2b, in particular, functions as a(More)
The conserved tryptophan in position 13 of TM-VI (Trp-VI:13 or Trp-6.48) of the CWXP motif located at the bottom of the main ligand-binding pocket in TM-VI is believed to function as a rotameric microswitch in the activation process of seven-transmembrane (7TM) receptors. Molecular dynamics simulations in rhodopsin demonstrated that rotation around the chi1(More)
Most nonpeptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 nonpeptide agonist,(More)
Recent high resolution x-ray structures of the β2-adrenergic receptor confirmed a close salt-bridge interaction between the suspected micro-switch residue ArgIII:26 (Arg3.50) and the neighboring AspIII:25 (Asp3.49). However, neither the expected "ionic lock" interactions between ArgIII:26 and GluVI:-06 (Glu6.30) in the inactive conformation nor the(More)
The pH variation of the kinetic parameters, Vmax and V/K, was examined for the forward and reverse reaction of bovine liver argininosuccinate lyase. In the forward reaction the Vmax profile showed one group that must be unprotonated for activity over the pH range 5-10. The V/K profile for argininosuccinate showed one group that must be unprotonated and two(More)
The carboxyamidated wFwLL peptide was used as a core ligand to probe the structural basis for agonism versus inverse agonism in the constitutively active ghrelin receptor. In the ligand, an efficacy switch could be built at the N terminus, as exemplified by AwFwLL, which functioned as a high potency agonist, whereas KwFwLL was an equally high potency(More)
Seven transmembrane segment (7TM) receptors are activated through a common, still rather unclear molecular mechanism by a variety of chemical messengers ranging from monoamines to large proteins. By introducing a His residue at position III:05 in the CXCR3 receptor a metal ion site was built between the extracellular ends of transmembrane (TM) III and TM-IV(More)
Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics simulations showed that, although the fewer water molecules(More)
PYY3-36 is a biopharmaceutical antiobesity agent under development as well as an endogenous satiety hormone, which is generated by dipeptidyl peptidase-IV digestion of polypetide YY (PYY), and in contrast to the parent hormone, PYY is highly selective for the Y2 versus the Y1 receptor. NMR analysis revealed a highly ordered, back-folded structure for human(More)