Rico Schroeder

Learn More
This study has aimed to develop a novel pre-diagnostic tool for primary care screening of heart disease based on multivariate short-term heart rate variability (HRV) analyzed by linear (time and frequency domain) and nonlinear methods (compression entropy (CE), detrended fluctuation analysis (DFA), Poincaré plot analysis, symbolic dynamics) applied to 5-min(More)
In the recent years, short-term heart rate variability (HRV) describing complex variations of beat-to-beat interval series that are mainly controlled by the autonomic nervous system (ANS) has been increasingly analyzed to assess the ANS activity in different diseases and under various conditions. In contrast to long-term HRV analysis, short-term(More)
Traditional auscultation performed by the general practitioner remains problematic and often gives significant results only in a late stage of heart valve disease. Valve stenoses and insufficiencies are nowadays diagnosed with accurate but expensive ultrasonic devices. This study aimed to develop a new heart sound analysis method for diagnosing aortic valve(More)
The objectives of this study were to introduce a new type of heart-rate variability analysis improving risk stratification in patients with idiopathic dilated cardiomyopathy (DCM) and to provide additional information about impaired heart beat generation in these patients. Beat-to-beat intervals (BBI) of 30-min ECGs recorded from 91 DCM patients and 21(More)
In industrialized countries with aging populations, heart failure affects 0.3-2% of the general population. The investigation of 24 h-ECG recordings revealed the potential of nonlinear indices of heart rate variability (HRV) for enhanced risk stratification in patients with ischemic heart failure (IHF). However, long-term analyses are time-consuming,(More)
In this work, Refined Multiscale Entropy (RMSE) was applied to characterize risk of cardiac death in ischemic cardiomyopathy patients, analyzing heart rate variability (HRV) by means of RR series during daytime and nighttime. RMSE approach measures an entropy rate in different time scales of a series, giving a multiscale characterization of complexity of(More)
The cardiovascular and respiratory autonomic nervous regulation has been studied mainly by hemodynamic responses during different physical stressors. In this study, dynamics of autonomic response to an orthostatic challenge was investigated by hemodynamic variables and by diverse linear and nonlinear indices calculated from time series of beat-to-beat(More)
  • 1