Rico K. H. Lo

Learn More
Melatonin is a pineal hormone involved in neuroendocrine processes in mammals. It has been shown that melatonin inhibits the enzymatic activities of adenylyl cyclases and the transcriptional activities of CREB. In this report, we demonstrate that 2-iodomelatonin (2IMT) treatment on COS-7 cells transfected with melatonin receptors (mt1 and MT2) induces c-Jun(More)
Hematopoietic restrictive Galpha(16) has long been known to stimulate phospholipase Cbeta (PLCbeta) and induce mitogen-activated protein kinase (MAPK) phosphorylation. Recently, we have demonstrated that Galpha(16) is capable of inducing the phosphorylation and transcriptional activation of transcription factors, such as signal transducer and activator of(More)
G protein-coupled receptors constitute the largest family of cell surface receptors in the mammalian genome. As the core of the G protein signal transduction machinery, the Gα subunits are required to interact with multiple partners. The GTP-bound active state of many Gα subunits can bind a multitude of effectors and regulatory proteins. Yet it remains(More)
A number of G protein-coupled receptors (GPCRs) have been shown to stimulate signal transducers and activators of transcription (STAT) activities while STAT3 activation by G alpha(o) can lead to neoplastic transformation in fibroblasts. In the present study we examined the ability of GPCRs to activate STAT3 via G alpha(16), a G alpha subunit which is(More)
Many G protein-coupled receptors (GPCRs) are known to modulate cell growth and differentiation by stimulating the extracellular signal-regulated protein kinases (ERKs). In growth factor signaling, ERKs are typically stimulated through an elaborate network of modules consisting of adaptors, protein kinases, and the small GTPase Ras. The mechanism by which G(More)
Signal transducer and activator of transcription 3 (STAT3) can be stimulated by several G(s)-coupled receptors, but the precise mechanism of action has not yet been elucidated. We therefore examined the ability of Galpha(s)Q226L (Galpha(s)QL), a constitutively active mutant of Galpha(s), to stimulate STAT3 Tyr705 and Ser727 phosphorylations in human(More)
The hematopoietic-specific Galpha16 protein has recently been shown to mediate receptor-induced activation of the signal transducer and activator of transcription 3 (STAT3). In the present study, we have delineated the mechanism by which Galpha16 stimulates STAT3 in human embryonic kidney 293 cells. A constitutively active Galpha16 mutant, Galpha16QL,(More)
Reporter gene assays are versatile and sensitive methods of assaying numerous targets in high-throughput drug-screening programs. A variety of reporter genes allow users a choice of signal that can be tailored to the required sensitivity, the available detection apparatus, the cellular system employed, and the required compatibility with multiplexed assays.(More)
The hematopoietic-specific Galpha14 links a variety of G protein-coupled receptors to phospholipase Cbeta (PLCbeta) stimulation. Recent studies reveal that several Galpha subunits are capable of activating signal transducer and activator of transcription (STAT) proteins. In the present study, we investigated the mechanism by which Galpha14 mediates(More)
The hematopoietic-specific G(q) subfamily members, Galpha(16) and Galpha(14) proteins have recently been shown to be capable of stimulating the signal transducer and activator of transcription 3 (STAT3) as well as STAT1. In the present study we examined whether this activation was STAT-member specific as well as determining the possible involvement of(More)